[1] Bell S R. The Bergman kernel function and proper holomorphic mappings. Trans Amer Math Soc, 1982, 270:685-691
[2] D'Angelo J P. An explicit computation of the Bergman kernel function. J of Geom Anal, 1994, 4:23-34
[3] Yin Weiping, Su Jianbing. The Bergman kernels on generalized Hua domains. Progress in Natural Science, 2002, 12(12):893-899
[4] Roos G. Weighted Bergman kernels and virtual Bergman kernels. Science in China (Ser A), Mathematics, 2005, 48:225-237
[5] Edigarian A, Zwonek W. Geometry of the symmetrized polydisc. Arch Math, 2005, 84:364-374
[6] Park J D. Explicit formulas of the Bergman kernel for 3-dimensional complex ellipsoids. J Math Anal Appl, 2013, 400:664-674
[7] Bergman S. Zur theorie von psedokonformen addildungen. Mat Sb, 1936, 1(1):79-96
[8] D'Angelo J P. A note on the Bergman kernel. Duke Math J, 1978, 45:259-265
[9] Francsics G, Hanges N. The Bergman kernel of complex ovals and multivariable hypergeometric functions. J Funct Anal, 1996, 142(2):494-510
[10] Zinovev B S. On reproducing kernels for multicircular domains of holomorhpy. Sib Math J, 1974, 15:35-48
[11] Hua Luogeng. Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains (in Chinese). Beijing:Science Press, 1959
[12] Yin Weiping. Two problems of Cartan domains. J of China Univ of Sci and Tech, 1986, 16(2):130-146
[13] Forelli F, Rudin W. Projections on spaces of holomorphic functions in balls. Indiana Univ Math J, 1974, 24:593-602
[14] Boas H P, Fu Siqi, Straube E J. The Bergman kernel function:Explicit formulas and zeros. Proc of AMS, 1999, 127(3):805-811
[15] Engliš M, Zhang Genkai. On a generalized Forelli-Rudin construction. Complex Variables and Elliptic Equations, 2006, 51:277-294
[16] Yin Weiping, Wang An, Zhao Zhengang, et al. The Bergman kernel functions on Hua domains. Science in China (Series A), 2001, 44(6):727-741
[17] Park J D. New formulas of the Bergman kernels for complex ellipsoids in C2. Proc Amer Math Soc, 2008, 136(12):4211-4221
[18] Valencourt H. Projecteurs sur les espaces de fonctions holomorphes:Propri'et'es et applications[D]. docteur de l'Universit'e de Poitiers, 2002
[19] Francsics G, Hanges N. Explicit formulas for the Szego kernel on certain weakly pseudoconvex domains. Proc Amer Math Soc, 1995, 123:3161-3168
[20] Yin Weiping. The Bergman kernels on Cartan-Hartogs domains. Chinese Science Bulletin (Series A), 1999, 44(21):1947-1351
[21] Yin Weiping. The Bergman kernels on super-Cartan domain of the first typer. Science in China (Series A), 2000, 43(1):13-21
[22] Yin W P. The Bergman kernels on super-Cartan domain of the forth type. Acta Mathematic Sinica Chinese Series (in Chinese), 1999, 42(5):951-960
[23] Yin Weiping. The Bergman kernels on super-Cartan domain of the second type. Chinese Annals of Mathematics (in Chinese), 2000, 21A(3):331-340
[24] Yin Weiping. The Bergman kernels on super-Cartan domain of the third type. Advance in Mathematics (China) (in Chinese), 2000, 29(5):425-434
[25] Yin Weiping, Wang Nan, Zhao Ling. Computations of Bergman kernels on Cartan-Egg domains of second and third types//Boundary Value Problems. Integral Equations and Related Problems. Singapore:World Scientific, 2002:53-260
[26] Yin Weiping. The Bergman kernels on Cartan-Egg domains of the first type. Northeast Mathematics J, 2001, 17(2):210-220
[27] Yin Weiping, Su Jianbing. The explicit computations of Bergman kernels on generalized Hua domains. Advance in Mathematics (China), 2001, 30(5):473-476 |