[1] Rockafellar R T. Monotone operators and the proximal point algorithm. SIAM J Control Optim, 1976, 14(5):877-898
[2] Tseng P. Applications of a splitting algorithm to decomposition in convex programming and variational inequalities. SIAM J Control Optim, 1991, 29(1):119-138
[3] Han W M, Reddy B D. On the finite element method for mixed variational inequalities arising in elastoplasticity. SAIM J Numerical Anal, 1995, 32(6):1778-1807
[4] Chinchuluun A, Pardalos P M, Migdalas A, et al. Pareto Optimality, Game Theory and Equilibria. Berlin:Springer, 2008
[5] Xia F Q, Huang N J, Liu Z B. A projected subgradient method for solving generalized mixed variational inequalities. Oper Res Lett, 2008, 36(5):637-642
[6] Wu K Q, Huang N J. The generalized f-projection operator and set-valued variational inequalities in Banach spaces. Nonlinear Anal:TMA, 2009, 71(7):2481-2490
[7] Tang G J, Huang N J. Gap functions and global error bounds for set-valued mixed variational inequalities. Taiwan J Math, 2013, 17(4):1267-1286
[8] Tran D Q, Muu L D, Nguyen V H. Extragradient algorithm extended to equilibrium problems. Optim, 2008, 57(6):749-779
[9] Dinh B V, Muu L D. A projection algorithm for solving pseudomonotone equilibrium problems and its application to a class of bilevel equilibria. Optim, 2013, 64(3):559-575
[10] Brezis H. Operateurs Maximaux Monotone et Semi-Groupes de Contractions Dans Les Espaces de Hilbert. Amsterdam:North-Holland Publishing Company, 1973
[11] Bnouhachem A. A self-adaptive method for solving general mixed variational inequalities. J Math Anal Appl, 2005, 309(1):136-150
[12] Zeng L C, Yao J C. Convergence analysis of a modified inexact implict method for general monotone variational inequalities. Math Methods Oper Res, 2005, 62(2):211-224
[13] He Y R. A new projection algorithm for mixed variational inequalities. Acta Math Sci, 2007, 27A(2):215-220
[14] Xia F Q, Li T, Zou Y Z. A projection subgradient method for solving optimization with variational inequality constraints. Optim Lett, 2014, 8(1):279-292
[15] Tang G J, Zhu M, Liu H W. A new extragradient-type method for mixed variational inequalities. Oper Res Lett, 2015, 43(6):567-562
[16] Solodov M V, Svaiter B F. A new projection method for variational inequality problems. SIAM J Control Optim, 1999, 37(3):765-776
[17] Facchinei F, Pang J S. Finite-dimensional Variational Inequalities and Complementarity Problems. New York:Springer-Verlag, 2003
[18] Wang Y J, Xiu N H, Wang C Y. Unified framework of extragradient-type methods for pseudomonotone variational inequalities. J Optim Theory Appl, 2001, 111(3):641-656
[19] Iusem A N, Svaiter B F. A variant of Korpelevich's method for variational inequalities with a new search strategy. Optim, 1997, 42(4):309-321
[20] He Y R. A new double projection algorithm for variational inequalities. J Comput Appl Math, 2006, 185(1):166-173
[21] Browder F E. Multi-valued monotone nonlinear mapping and duality mappings in Banach space. Trans Amer Math Soc, 1965, 118:338-351
[22] Anh P N, Muu L D, Nguyen V H, Strodiot J J. Using the Banach contraction principle to implement the proximal point method for multivalued monotone variational inequalities. J Optim Theory Appl, 2005, 124(2):285-306
[23] Xia F Q, Huang N J. A projection-proximal point algorithm for solving generalized variational inequalities. J Optim Theory Appl, 2011, 150(1):98-117
[24] Li F L, He Y R. An algorithm for generalized variational inequality with pseudomonotone mapping. J Comput Appl Math, 2009, 228(1):212-218
[25] Fang C J, He Y R. A double projection algorithm for multi-valued variational inequslities and a unified framework of the method. Appl Math Comput, 2011, 217(23):9543-9551
[26] Yin H Y, Xu C X, Zhang Z X. The F-complementarity problems and its equivalence with the least element problem. Acta Math Sinica, 2001, 44(4):679-686
[27] Zhong R Y, Huang N J. Stability analysis for minty mixed variational inequality in reflexive Banach spaces. J Optim Theory Appl, 2010, 147(3):454-472
[28] Polyak B T. Introduction to Optimization. New York:Optimization Software, 1987
[29] Aubin J P, Ekeland I. Applied Nonlinear Analysis. New York:John Wiley & Sons Incorporated, 1984
[30] Lin T Y, Ma S Q, Zhang S Z. On the global linear convergence of the ADMM with multi-block variables. SIAM J Optim, 2015, 25(3):1478-1497 |