[1] Abbas M, Jungck J. Common fixed point results for noncommuting mappings without continuity in cone metric spaces. J Math Anal Appl, 2008, 341: 416–420
[2] Abbas M, Ali Khan M. Common fixed point theorem of two mappings satisfying a generalized weak con-tractive condition. Int J Math Math Sci, 2009, 2009: Article ID 131068
[3] Ahmad A G B, Fadail Z M, ´Cojbaˇsi´c Raji´c V, Radenovi´c S. Nonlinear contractions in 0-complete partial metric spaces. Abstract Appl Anal, 2012, 2012: Article ID 451239
[4] Aydi H, Abbas M, Vetro C. Partial Hausdorff metric and Nadler´s fixed point theorem on partial metric spaces. Topology Appl, 2012, 159(14): 3234–3243
[5] Aydi H, Vetro C, Shatanawi W, Kumam P. Coincidence and fixed points for contractions and cyclical contractions in partial metric spaces. Fixed Point Theory Appl, 2012, 2012: 124
[6] Abdeljawad T. Fixed points for generalized weakly contractive mappings in partial metric spaces. Math Comput Model, 2011, 54: 2923–2927
[7] Abdeljawad T, Karapinar E, Tas K. A generalized contraction principle with control functions on partial metric spaces. Comput Math Appl, 2012, 6: 716–719
[8] Abdeljawad T, Karapinar E, Tas K. Existence and uniqueness of a common fixed point on partial metric spaces. Appl Math Lett, 2011, 24: 1900–1904
[9] Alber Ya I, Guerre-Delabriere S. Principle of weakly contractive maps in Hilbert spaces//Gohberg I, Lyubich Yu, ed. New Results in Operator Theory, Advances and Appl. Basel: Birkhauser Verlag, 1997, 98: 7–22
[10] Altun I, Erduran A. Fixed point theorems for monotone mappings on partial metric spaces. Fixed Point Theory Appl, 2011, 2011: Article ID 508730
[35] Berinde V, Vetro F. Common fixed point of mappings satisfying implicit contractive conditions. Fixed Point Theory Appl, 2012, 2012: 105
[12] ´Ciri´c Lj B, Samet B, Aydi H, Vetro C. Common fixed points of generalized contractions on partial metric spaces and applications. Appl Math Comput, 2011, 218: 2398–2406
[13] Di Bari C, Milojevi´c M, Radenovi´c S, Vetro P. Common fixed points for self-mappings on partial metric spaces. Fixed Point Theory Appl, 2012, 2012: 140
[14] Di Bari C, Vetro P. Common fixed points for -contractions on partial metric spaces. To appear in Hacet J Math Stat
[15] Di Bari C, Vetro P. Fixed points for weak -contractions on partial metric spaces. Int J of Engineering, Contemporary Mathematics and Sciences, 2011, 1: 5–13
[16] Di Bari C, Kadelburg Z, Nashine H K, Radenovi´c S. Common fixed points of g-quasicontractions and related mappings in 0-complete partial metric spaces. Fixed Point Theory Appl, 2012, 2012: 113
[17] Dutta P N, Choudhury B S. A generalization of contraction principle in metric spaces. Fixed Point Therory Appl, 2008, 2008: Article ID 406368
[18] –Duki´c D, Kadelburg Z, Radenovi´c S. Fixed points of Geraghty-type mappings in various generalized metric spaces. Abstract Appl Anal, 2011, 2011: Article ID 561245
[19] –Dori´c D. Common fixed point for generalized ( ψ, φ)-weak contractions. Appl Math Lett, 2009, 22: 1896–1900
[20] Huang X, Zhu C, Wen X. Fixed point theorems for expanding mappings in partial metric spaces. An St Univ Ovidius Constanta, 2012, 20(1): 213–224
[21] Ili´c D, Pavlovi´c V, Rakoˇcevi´c V. Some new extensions of Banach´s contractions principle in partial metric
spaces. Appl Math Lett, 2011, 24: 1326–1330
[22] Ili´c D, Pavlovi´c V, Rakoˇcevi´c V. Extensions of Zamfirescu theorem to partial metric spaces. Math Comput
Model, 2012, 55: 801–809
[23] Kadelburg Z, Nashine H K, Radenovi´c S. Fixed point results under various contractive conditions in partial metric spaces. RASCAM, 2013, 107(2): 241–256
[24] Karapinar E, Erhan I M. Fixed point theorems for operators on partial metric spaces. Appl Math Lett, 2011, 24: 1894–1899
[25] Khan M S, Swaleh M, Sessa S. Fixed point theorems by altering distances between the points. Bull Aust Math Soc, 1984, 30: 1–9
[26] Matthews S G. Partial Metric Topology. Research Report 212. Dept of Computer Science, University of Warwick, 1992
[27] Matthews S G. Partial metric topology//Proc 8th Summer Conference on General Topology and Applica-tions. Ann New York Acad Sci, 1994, 728: 183–197
[28] Nashine H K, Kadelburg Z, Radenovi´c S. Common fixed point theorems for weakly isotone increasing mappings in ordered partial metric spaces. Math Comput Model, 2013, 57(9/10): 2355–2365
[29] Nashine H K, Kadelburg Z, Radenovi´c S, Kim J K. Fixed point theorems under Hardy-Rogers contractive conditions on 0-complete ordered partial metric spaces. Fixed Point Theory Appl, 2012, 2012: 180
[30] O’Neill S J. Partial metrics, valuations and domain theory//Proc 11th Summer Conference on General Topology and Applications. Ann New York Acad Sci, 1996, 806: 304–315
[31] O’Neill S J. Two topologies are better than one. Tech report, University of Warwick, Conventry, UK,
http://www.dcs.warwick.ac.uk/reports/283.html.1995
[32] Oltra S, Valero O. Banach’s fixed point theorem for partial metric spaces. Rend Istit Math Univ Trieste, 2004, 36: 17–26
[33] Paesano D, Vetro P. Suzuki’s type characterizations of completeness for partial metric spacers and fixed points for partially ordered metric spaces. Topology Appl, 2012, 159: 911–920
[34] Radenovi´c S, Kadelburg Z, Jandrli´c D, Jandrli´c A. Some results on weakly contractive maps. Bull Iran Math Soc, 2012, 38(3): 625–645
[35] Rhoades B E. Some theorems on weakly contractive maps. Nonlinear Anal, 2001, 47: 2683–2693
[36] Romaguera S. Fixed point theorems for generalized contractions on partial metric spaces. Topology Appl, 2011, 159: 194–199
[37] Romaguera S. Kirk A. Type characterization of completeness for partial spaces. Fixed Point Theory Appl, 2010, 2010: Article ID 493298
[38] Samet B, Rajovi´c M, Lazovi´c R, Stoiljkovi´c R. Common fixed point results for nonlinear contractions in ordered partial metric spaces. Fixed Point Theory Appl, 2011, 2011: 71
[39] Vetro F, Radenovi´c S. Nonlinear -quasi-contractions of ´Ciri´c-type in partial metric spaces. Appl Math Comput, 2012, 219(4): 1594–1600 |