[1] Xu Z Y, Zhou C P. On Riemann-Hilbert problems for nonhomogeneous Dirac equations in a half space of Rm (m ≥2). Clifford algebras in analysis and related topics, 1996: 285–296
[2] Xu Z Y, Zhou C P. On boundary value problems of Riemann-Hilbert type for monogenic functions in a half space of Rm (m ≥2). Complex Variables Theory Appl, 1993, 22(3/4): 181–193
[3] Xu Z Y, Chen J, Zhang W G. A harmonic conjugate of the Poisson kernel and a boundary value problem for monogenic functions in the unit ball of Rn (n ≥2). Simon Stevin ,1990, 64(2): 187–201
[4] Gong Y F. A kind of Riemann and Hilbert boundary value problem for left monogenic functions in Rm (m ≥2). Complex Variables, 2004, 49: 303–318
[5] Brackx F, Delanghe R, Sommen F. Clifford analysis, 1982, 76
[6] Wang Y F, Du J Y. On Haseman boundary value problem for a class of meta-analytic functions. Acta Mathematica Scientia, 2011, 31B(1): 39–48
[7] Wang Y F, Du J Y. Hilbert boundary value problems of polyanalytic functions on the unit circumference. Complex Var Elliptic Equ, 2006, 51: 923–943
[8] Ji X H, Qian T, Ryan J. Fourier theory under M¨obius transformations//Clifford Algebras and their Applications in Mathematical Physics. Boston: Birkhäuser, 2000, 2: 57–80
[9] Zhang Z X. Some Riemann boundary value problems in Clifford analysis (I). Complex Variables and Elliptic Equations, Available online: 20 Sep, 2011
[10] Obolashvili E. Partial differential equations in Clifford analysis. Pitman Monographs and Surveys in Pure and Applied Mathematics, 1998
[11] Obolashvili E. Higher order partial differential equations in Clifford analysis. Progress in Mathematical Physics, 2003
[12] Obolashvili E. Some partial differential equations in Clifford analysis. Banach Center Publications, 1996, 37: 173–176
[13] Delanghe R, Sommen F, Souˇcek V. Clifford algebra and spinor valued functions, 1992
[14] Bernstein S. On the left linear Riemann problem in Clifford analysis. Bull Belg Math Soc, 1996, 3: 557–576
[15] Gilbert G E, Murray M A M. Clifford algebra and Dirac operators in harmonic analysis//Cambridge studies in advanced mathematics 26. Cambridge: Cambridge University Press, 1991 |