数学物理学报(英文版) ›› 2012, Vol. 32 ›› Issue (2): 531-538.doi: 10.1016/S0252-9602(12)60035-6
崔建莲|Choonkil Park
CUI Jian-Lian, Choonkil Park
摘要:
Let A be a factor von Neumann algebra and Φ be a nonlinear surjective map from A onto itself. We prove that, if Φ satisfies that Φ(A)Φ(B) − Φ(B)Φ(A)* =AB − BA* for all A, B ∈ A, then there exist a linear bijective map Ψ : A → A satisfying (A) (B) − (B) (A)* = AB − BA* for A, B ∈ A and a real functional h on A with h(0) = 0 such that Φ(A) = (A) + h(A)I for every A ∈ A. In particular, if A is a type I factor, then, Φ(A) = cA + h(A)I for every A ∈ A, where c = ±1.
中图分类号: