[1] Andersson L E. On the determination of a function from spherical averages. SIAM J Math Anal, 1988, 19: 214–234
[2] Aronszajn N. Theory of reproducing kernels. Trans Amer Math Soc, 1948, 68: 337–404
[3] Erdely A, et al. Higher transcendental functions. Vol 1. New York: Mc Graw-Hill Book Compagny, 1953
[4] Erdely A, et al. Tables of integral transforms. Vol 2. New York: Mc Graw-Hill Book Compagny, 1954
[5] Fawcett J A. Inversion of N-dimensional spherical means. Siam J Appl Math, 1985, 45: 336–341
[6] Fujiwara H, Matsuura T, Saitho S. Numerical real inversion formulas of the Laplace transform. Announcement.
[7] Helesten H, Andersson L E. An inverse method for the processing of synthetic aperture radar data. Inv Prob, 1987, 3: 111–124
[8] Herberthson M. A Numerical Implementation of an Inversion Formula for CARABAS Raw Data. Internal report D 30430-3.2. Sweden: National Defense Research Institute, Link¨oping, 1986
[9] Lebedev N N. Special functions and their applications. New-York: Dover publications, Inc, 1972
[10] Matsuura T, Saitoh S, Trong D D. Approximate and analytical inversion formulas in heat conduction on multidimensional spaces. J Inv Ill-posed Problems, 2005, 13(5): 479–493
[11] Nessibi M M, Rachdi L T, Trim`eche K. Ranges and inversion formulas for spherical mean operator and its dual. J Math Anal Appl, 1995, 196(3): 861–884
[12] Rachdi L T, Trim`eche K. Weyl transforms associated with the spherical mean operator. Anal Appl, 2003, 1(2): 141–164
[13] Saitoh S. The Weierstrass transform and an isometry in the heat equation. Applicable Anal, 1983, 16: 1–6
[14] Saitoh S. Approximate real inversion formulas of the gaussian convolution. Applicable Anal, 2004, 83(7): 727–733
[15] Saitoh S. Applications of Tikhonov regularization to inverse problems using reproducing kernels. J Phys: Conf Ser, 2007, 88: 012019
[16] Watson G N. A treatise on the theory of Bessel functions. 2nd ed. London/New-York: Cambridge Univ Press, 1966
[17] Yamada M, Matsuura T, Saitho S. Representations of inverse functions by the integral transform with the sign kernel. Frac Calc Appl Anal, 2007, 2: 161–168 |