[1] Doi Y. Braided bialgebras and quadratic bialgebras. Comm. Algebra, 1993, 21: 1731--1749
[2] Doi Y, Takeuchi M. Multiplication alteration by two-cocycles-the quantum version. Comm Algebra 1994, 22: 5715--5732
[3]Jiao Z M, Wisbauer R. The braided structures for ω-smash coproduct Hopf algebras. J Algebra, 2005, 287: 474--495
[4] Larson R, Towber J. Two dual classes of bialgebras related to the concepts of ``quantum groups'' and ``quantum Lie algebras''. Comm Algebra, 1991, 19: 3295--3345
[5]} Montgomery, S. Hopf Algebras and Their Actions on Rings. CBMS Lectures in Math Vol 82. Providence, RI: AMS, 1993
[6]}Radford D E. The structure of Hopf algebra with a projection. J Algebra, 1985, 92: 322--347
[7]}Sweedler M E. Hopf Algebras. New York: Benjamin, 1969
[8]}Taft E J. The order of the antipode of finite dimensional Hopf algebra. Proc Nat Acad Sci USA, 1971, 68: 2631--2633
[9] Wang S H. On braided Hopf algebra structures over the twisted smash products. Comm Algebra, 1999, 27: 5561--5573
[10] Zhao W Z. On (f,τ)-compatible Hopf algebra pair (B,H) (in Chinese). Acta Mathematica Scientia, 2007, 27A(1): 155--165 |