数学物理学报(英文版) ›› 2010, Vol. 30 ›› Issue (1): 208-214.doi: 10.1016/S0252-9602(10)60038-0

• 论文 • 上一篇    下一篇

LOCAL REGULARITY RESULT IN OBSTACLE PROBLEMS

高红亚, 郭静, 左亚丽, 褚玉明   

  1. College of Mathematics and Computer Science, Hebei University, Baoding 071002, China
    Hebei Provincial Center of Mathematics, Shijiazhuang 050016, China
  • 收稿日期:2006-12-25 修回日期:2008-04-21 出版日期:2010-01-20 发布日期:2010-01-20
  • 基金资助:

    The first author is supported by NSF of Hebei Province (07M003). The fourth author is supported by NSFC (10771195), and NSF of Zhejiang Province (Y607128).

LOCAL REGULARITY RESULT IN OBSTACLE PROBLEMS

 GAO Hong-ya, GUO Jing, ZUO Ya-Li, CHU Yu-Ming   

  1. College of Mathematics and Computer Science, Hebei University, Baoding 071002, China
    Hebei Provincial Center of Mathematics, Shijiazhuang 050016, China
  • Received:2006-12-25 Revised:2008-04-21 Online:2010-01-20 Published:2010-01-20
  • Supported by:

    The first author is supported by NSF of Hebei Province (07M003). The fourth author is supported by NSFC (10771195), and NSF of Zhejiang Province (Y607128).

摘要:

We obtain a local regularity result for solutions to Kψ,θ -obstacle problem of A-harmonic equation divA(x, u(x), ∨ u(x))=0, where A: Ω×R×R→ Rn is a Carath\'eodory function satisfying some coercivity and growth conditions with the natural exponent 1<p<n, the obstacle function ψ≥0$, and the boundary data θ W1, p(Ω).

关键词: local regularity,  A-harmonic equation, obstacle problem

Abstract:

We obtain a local regularity result for solutions to Kψ,θ -obstacle problem of A-harmonic equation divA(x, u(x), ∨ u(x))=0, where A: Ω×R×R→ Rn is a Carath\'eodory function satisfying some coercivity and growth conditions with the natural exponent 1<p<n, the obstacle function ψ≥0$, and the boundary data θ W1, p(Ω).

Key words: local regularity,  A-harmonic equation, obstacle problem

中图分类号: 

  • 35J60