数学物理学报(英文版) ›› 2009, Vol. 29 ›› Issue (2): 225-231.doi: 10.1016/S0252-9602(09)60023-0
• 论文 • 下一篇
丁毅
Ding Yi
摘要:
In this article, the author derives a functional equation
η(s)=[( /4)s-1/22/ Γ(1-s)sin( s/2)]η(1-s) (1)
of the analytic function η(s) which is defined by
η(s)=1-s-3-s-5-s+7-s+… (2)
for complex variable s with Re s > 1, and is defined by analytic continuation for other values of s. The author proves (1) by Ramanujan identity (see [1], [3]). Her method provides a new derivation of the functional equation of Riemann zeta function by using Poisson summation formula.
中图分类号: