[1] Blumenthal R, Getoor R. Some theorems on stable processes. Trans Amer Math Soc, 1960, 95: 263-273 [2] Allen M, Caffarelli L, Vasseur A. A parabolic problem with a fractional time derivative. Arch Ration Mech Anal, 2016, 221: 603-630 [3] Bernardis A, Martín-Reyes F, Stinga P, Torrea J. Maximum principles, extension problem and inversion for nonlocal one-sided equations. J Differ Equ, 2016, 260: 6333-6362 [4] Caffarelli L, Silvestre L. An extension problem related to the fractional Laplacian. Comm Partial Differ Equ, 2007, 32: 1245-1260 [5] Caffarelli L, Salsa S, Silvestre L. Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian. Invent Math, 2008, 171: 425-461 [6] Caffarelli L, Stinga P. Fractional elliptic equations, Caccioppoli estimates and regularity. Ann Inst H Poincare Anal Non Linaire, 2016, 33: 767-807 [7] Caffarelli L, Vasseur A.Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation. Ann Math, 2010, 171: 1903-1930 [8] Chen Z, Song R. Estimates on Green functions and Poisson kernels for symmetric stable processes. Math Ann, 1998, 312: 465-501 [9] Herrmann R.Fractional Calculus: An Introduction for Physicists. Singapre: World Scientific, 2014 [10] Kwaśnicki M. Ten equivalent definitions of the fractional Laplace operator. Fractional Calculus and Applied Analysis, 2017, 20: 7-51 [11] Li P, Hu R, Zhai Z.Fractional Besov trace/extension type inequalities via the Caffarelli-Silvestre extension. arXiv:2201.00765 [12] Qian T. Reproducing kernel sparse representations in relation to operator equations. Complex Anal Oper Theory, 2020, 14: 1-15 [13] Qu W, Chui C, Deng G, Qian T. Sparse repesentation of approximation to identity. Anal Appl, 2022, 20(4): 815-837 [14] Qian T. Two-dimensional adaptive Fourier decomposition. Math Meth Appl Sci, 2016, 39: 2431-2448 [15] Qian T.Algorithm of adaptive Fourier decomposition. IEEE Trans Signal Proc, 2016, 59: 5899-5906 [16] Ros-Oton X, Serra J. The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary. J Math Pure Appl, 2014, 101: 275-302 [17] Xie L, Zhang X. Heat kernel estimates for critical fractional diffusion operator. Studia Math, 2014, 224: 221-263 |