[1] Liu Chunlei, Wan Daqing. T-adic exponential sums over finite fields. Algebra and Number Theory, 2009, 3(5): 489-509 [2] Blache R, Férard É. Newton stratification for polynomials: The open stratum. J Number Theory, 2007, 123: 456-472 [3] Adolphson A, Sperber S. Exponential sums and Newton polyhedra: Cohomology and estimates. Ann Math, 1989, 130: 367-406 [4] Deligne P. La conjecture de Weil, II. Publ Math IHES, 1980, 52: 137-252 [5] Dwork B. Normalized period matrices, II. Ann of Math, 1973, 98: 1-57 [6] Fu L, Wan D. Moment L-functions, partial L-functions and partial exponential sums. Math Ann, 2004, 328: 193-228 [7] Hong S. Newton polygons of L-functions associated with exponential sums of polynomials of degree four over finite fields. Finite Fields Appl, 2001, 7: 205-237 [8] Hong S. Newton polygons for L-functions of exponential sums of polynomials of degree six over finite fields. J Number Theory, 2002, 97: 368-396 [9] Zhu H. p-adic Variation of L-functions of exponential sums, I. Amer J Math, 2003, 125: 669-690 [10] Zhu H. Asymptotic variation of L-functions of one variable sums. J Reine Angew Math, 2004, 572: 219-233 [11] Ren Rufei. Generic Newton polygon for exponential sums in n variables with parallelotope base. Amer J Math, 2020, 142: 367-406 [12] Liu Chunlei, Niu Chuanze. The p-adic Riemann hypothesis for expnonential sums. arXiv:1912.04503[math.NT] [13] Wan D. Variation of p-adic Newton polygons for L-functions of exponential sums. Asian J Math, 2004, 8(3): 427-472 [14] Robba P. Index of p-adic differential operators III. Application to twisted exponential sums. Astérisque, 1984, (119): 191-266 [15] Zeilberger D. A holonomic systems approach to special functions identities. J Comp Appl Math, 1990, 32: 321-368 |