[1] Debnath L, Bhatia D. Integral Transform and Their Application. 3rd ed. CRC Press, 2015 [2] Davies B. Integral Transform and their Application. Applied Mathematical Science. New York:SpringerVerlag, 1984 [3] Ernst T A. Comprehensive Treatment of q-Calculu. Basel:Springer, 2012 [4] Fitouhi A, Bettaibi N, Brahim K. The Mellin transform in quantum calculus. Constr Approx, 2006, 23:305-323 [5] Brahim K, Ouanes R. Some application of the q-Mellin transform. Tamsui Oxford J Math Sci, 2010, 26:335-343 [6] Nefzi B, Brahim K, Fitouhi A. On the finite Mellin transform in quantum calculus and Appication. Acta Math Sci, 2018, 38B:1393-1410 [7] Brahim K, Riahi L. Two dimensional Mellin transform in quantum calculus. Acta Math Sci, 2018, 38B:546-560 [8] Araci S, Duran U, Acikgoz M, Srivastava H M. A certain (p, q)-derivative operator and associated divided differences. J Ineq Appl, 2016, 301:8pp [9] Sadjang P N. On two (p, q)-analogue of Laplace transform. J Diff Eq Appl, 2017, 23:1562-1583 [10] Sadjang P N. On the fundamental theorem of (p, q)-calculus and some (p, q)-Taylor formulas. Results in Mathematics, 2018, 73:1-21 [11] Kadak U. On weighted statistical convergence based on (p; q)-integers and related approximation theorems for functions of two variables. J Math Anal Appl, 2016, 443:752-764 [12] Kadak U, Mohiuddine S A. Generalized statistically almost convergence based on the difference operator which includes the (p; q)-Gamma function and related approximation theorems. Results Math, 2018, 73(1):9 [13] Khan K, Lobiyal D K. Bézier curves based on Lupa's (p; q)-analogue of Bernstein functions in CAGD. J Comput Appl Math, 2017, 317:458-477 [14] Khan K, Lobiyal D K, Kilicman A. Bézier curves and surfaces based on modified Bernstein polynomials. Azerbaijan J Math, 2019, 9:3-21 [15] Mursaleen M, Ansari J A, Khan A. Some approximation results by (p; q)-analogue of Bernstein-Stancu operators. Appl Math Comput, 2015, 264:392-402[Corrigendum:Appl Math Comput, 2015, 269:744-746] [16] Mursaleen M, Ansari J A, Khan A. On (p; q)-analogue of Bernstein operators. Appl Math Comput, 2015, 266:874-882[Erratum:Appl Math Comput, 2016, 278:70-71] [17] Mursaleen M, Nasiruzzaman Md, Khan A, Ansari K J. Some approximation results on Bleimann-ButzerHahn operators defined by (p; q)-integers. Filomat, 2016, 30:639-648 [18] Nasiruzzaman Md, Mukheimer A, Mursaleen M. Some Opial-type integral inequalities via (p; q)-calculus. J Ineq Appl, 2019, 2019(1):295 [19] Titchmarsh E C. Introduction to the Theory of Fourier Integral. 2nd ed. Oxford University Press, 1937 [20] Kac V, Cheung P. Quantum Calculus. Universitext. New York:Springer-Verlag, 2002 [21] Landau E. Handbuch der Lehre von der Verteilung der Primzahlen[Handbook on the theory of the distribution of the primes]. Teubner:Leipzig, 1909, 31 |