[1] Aly E A A, Bouzar N. On geometric infinite divisibility and stability. Ann Ins Statist Math, 2000, 52(4):790-799 [2] Asmussen S. Ruin Probabilities, World Scientific, 2010 [3] Bon J L. Geometric Sums in reliability Evaluation of Regenerative Systems. Kalashnikov Memorial Seminar, 2002:161-163 [4] Gamboa F, Pamphile P. Random sums stopped by a rare event:a new approximation. Prob Math Stat, 2004, bf24(2):237-252 [5] Gnedenko B V, Korolev Yu V. Random Summation. Limit Theorems and Applications. New York:CRC Press, 1996 [6] Hung T L. On the rate of convergence in limit theorems for geometric sums. Southeast-Asian J Sci, 2013, 2(2):117-130 [7] Gut A. Probability:A Graduate Course. 2nd ed. New York, Heidelberg, Dordrecht, London:Springer, 2013 [8] Janković S. Enlargement of the class of geometrically infinitely divisible random variables. Publications de L' Institut Mathématique. Nouvelle série tome, 1993, 54(68):126-134 [9] Jose K K, Thomas M M. Generalized Laplacian distributions and Autoregressive Processes. Commun Stat-Theory and Methods, 2011, 40:4263-4277 [10] Kalashnikov V. Geometric Sum:Bounds for Rare Events with Applications. Kluwer Academic Publishers, 1997 [11] Khokhlov Yu S, Korolev V Yu, Zeifman A I. Multivariate scale-mixed stable distributions and related limit theorems. Mathematics, 2020, 8(5):749. https://doi.org/10.3390/math8050749 [12] Klebanov Lev B, Maniya G M, Melamed I A. A problem of Zolotarev and analogs of infinitely divisible and stable distributions in the scheme for summing a random number of random variables. Theory of Probability and Its Applications, 1984, 29(4):791-794 [13] Korolev V Yu, Gorshenin A K, Zeifman A I. On mixture representations for the generalized Linnik distribution and their applications in limit theorems. arXiv:1810.06389v1[math.PR], 2019 [14] Korolev V Yu, Zeifman A I. Convergence of statistics constructed from samples with random sizes to the Linnik and Mittag-Leffler distributions and their generalizations. arXiv:1602.02480v1[math.PR], 2016 [15] Korolev V Yu, Zeifman A I. A note on mixture representations for the Linnik and Mittag-Leffler distributions and their applications. J Math Sci, 2017, 218(3):314-327 [16] Kotz S, Kozubowski T J, Podgórsky K. The Laplace Distribution and Generalization. Springer Science + Business Media, 2001 [17] Kozubowski T J, Podgórski K. Skew Laplace distributions. I. Their origins and inter-relations. Math Sci, 2008, 33(1):22-34 [18] Kozubowski T J, Podgórski K. Skew Laplace distributions. II. Divisibility properties and extensions to stochastic processes. Math Sci, 2008, 33(1):35-48 [19] Kozubowski T J. Geometric infinitely divisibility, stability, and self-similarity:an overview//Misiewicz J K, ed. Stability in Probability. Warszawa:Banach Center Publications, Institute of Mathematics, Polish Academy of Sciences, 2010, 90:39-65 [20] Kruglov V M, Korolev V Yu. Limit Theorems for Random Sums. Moscow:Moscow University Press, (in Russian), 1990 [21] Lin G D. A note on the Linnik distributions. J Math Anal Appl, 1998, 217:701-706 [22] Lukacs E. Characteristic Functions. London:Charles Griffin and Co, 1970 [23] Malinowski M T. On some limit distributions for geometric random sums. Discuss Math Probab Stat, 2008, 28(2):247-266 [24] Petrov V V. Limit Theorems of Probability Theory (Sequences of Independent Random Variables). Clarendon Press Oxford, 1995 [25] Sandhya E, Pillai R N. On Geometric Infinitely Divisibility. Journal of the Kerala Statistical Association, 1999, 10:01-07 [26] Sheeja S S, Kumar S. Negative binomial sum of random variables and modeling financial data. Int J Stat Appl Math, 2017, 2(3):44-51 [27] Sunklodas J K. On the normal approximation of a negative binomial random sum. Lithuanian Mathematical Journal, 2015, 55(1):150-158 [28] Trotter H F. An elementary proof of the central limit theorem. Arch Math (Basel), 1959, 10:226-234 [29] Yakumiv A L. Asymptotics at infinity of negative binomial infinitely divisible distributions. Theory Probab Appl, 2011, 55(2):342-351 [30] Zolotarev V M. Ideal metrics in the problems of probability theory and mathematical statistics. Austral J Statist, 1979, 21(3):193-208 |