数学物理学报  2018, Vol. 38 Issue (4): 728-739   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
张晓建
具非线性中立项的广义Emden-Fowler微分方程的振动性
张晓建     
邵阳学院理学院 湖南 邵阳 422004
摘要:研究了一类具有一个非线性中立项的二阶非线性变时滞广义Emden-Fowler型泛函微分方程 $ \{ a(t)|[x(t) + p(t){x^\alpha }(\tau (t))]'{|^{\beta - 1}}[x(t) + p(t){x^\alpha }(\tau (t))]'\} ' + q(t)f(|x(\delta (t)){|^{\gamma - 1}}x(\delta (t))) = 0\left( {t \ge {t_0}} \right) $ 的振动性.利用广义的Riccati变换、Bernoulli不等式和Yang不等式,在两种情形 $ \int^{+\infty}_{t_{0}}a^{-1/\beta}(t){\rm d}t=+\infty \;\; \mbox{和}\;\; \int^{+\infty}_{t_{0}}a^{-1/\beta}(t){\rm d}t<+\infty $ 下建立了该类方程振动的若干新的判别准则,这些准则推广且改进了现有文献中的一些结果,所举例子说明这些定理的条件是比较宽松的.
关键词振动性    泛函微分方程    非线性中立项    Riccati变换    
Oscillation of Generalized Emden-Fowler Differential Equations with Nonlinear Neutral Term
Zhang Xiaojian     
Faculty of Science, Shaoyang University, Hunan Shaoyang 422004
Abstract: We study the oscillatory behavior of a certain class of second-order nonlinear variable delay generalized Emden-Fowler functional differential equations with a nonlinear neutral term of the form $ \{ a(t)|[x(t) + p(t){x^\alpha }(\tau (t))]'{|^{\beta - 1}}[x(t) + p(t){x^\alpha }(\tau (t))]'\} ' + q(t)f(|x(\delta (t)){|^{\gamma - 1}}x(\delta (t))) = 0\left( {t \ge {t_0}} \right). $ By using the generalized Riccati transformation and Bernoulli's inequality and Yang's inequality, we establish some new oscillation criteria for the equations under the cases when $ \int^{+\infty}_{t_{0}}a^{-1/\beta}(t){\rm d}t=+\infty \;\;\mbox{and}\;\; \int^{+\infty}_{t_{0}}a^{-1/\beta}(t){\rm d}t<+\infty $ the results obtained extend and improve some related results reported in the literature. Examples are provided to illustrate assumptions in our theorems are less restrictive.
Key words: Oscillation     Functional differential equation     Nonlinear neutral     Riccati transformation    
1 引言

近年来, 中立型时滞泛函微分方程的振动性等定性理论的研究引起了国内外学者的广泛兴趣和高度关注, 并发表了许多论文和专著, 见文献[1-17]及其参考文献.笔者考虑具有一个非线性中立项的二阶非线性变时滞Emden-Fowler型泛函微分方程

$ \{a(t)|[x(t)+p(t)x^{\alpha}(\tau(t))]'|^{\beta-1}[x(t)+p(t)x^{\alpha}(\tau(t))]'\}' +q(t)f(|x(\delta(t))|^{\gamma-1}x(\delta(t)))=0, t \ge t_{0} $ (1.1)

的振动性, 为了叙述方便, 本文总假设下列条件成立.

(H$_{1}$)  常数$0<\alpha\leqslant1$$\gamma>0$均为两个正奇数的商, 而$\beta>0$为实常数; 函数$a\in C^{1}([t_{0}, +\infty), (0, +\infty))$, $p, q\in C([t_{0}, +\infty), {\mathbb{R}})$, 且$0\leqslant p(t)<1, q(t)>0$.

(H$_{2}$)  滞量函数$\tau, \delta:[t_{0}, +\infty)\rightarrow(0, +\infty)$, $\tau(t)\leqslant t$$\lim\limits_{t\rightarrow+\infty}\tau(t)=+\infty$; $\delta(t)\leqslant t, $ $\lim\limits_{t\rightarrow+\infty}\delta(t)=+\infty$$\delta'(t)>0$.

(H$_{3}$)  函数$f\in C({\mathbb{R}}, {\mathbb{R}})$, 且当$u\neq0$$uf(u)\neq0$, $f(u)/u \ge L$ (这里$L>0$为常数).

我们称函数$x(t)\in C^{1}([T_{x}, +\infty), {\mathbb{R}})(T_{x} \ge t_{0})$是方程(1.1)的一个解, 如果函数$x(t)$满足

$ a(t)|[x(t)+p(t)x^{\alpha}(\tau(t))]'|^{\beta-1}[x(t)+p(t)x^{\alpha}(\tau(t))]'\in C^{1}([T_{x}, +\infty), {\mathbb{R}}) $

且在半区间$[T_{x}, +\infty)$上满足方程(1.1);方程(1.1)的一个解$x(t)$称为是振动的, 如果它既不最终为正也不最终为负, 否则称它是非振动的; 方程(1.1)称为是振动的, 如果它的所有解都是振动的.本文中我们感兴趣的是方程(1.1)的非平凡解.

由于方程(1.1)是具有一个拟线性中立项的微分方程, 这就给研究带来了极大的困难.而对于具有非线性中立项的, 学者们要么回避研究这类方程, 要么是增加一些条件, 将方程的这个非线性中立项转化为线性的来研究[1-3, 5-17].仅文献[4]直接研究了具有非线性中立项的一阶微分方程

$ [x(t)-px^{\alpha}(t-\tau)]'+q(t)\prod\limits^{m}_{j=1}|x(t-\sigma_{j})|^{\beta_{j}}{\rm sgn}|x(t-\sigma_{j})|=0 $

的振动性, 得到了其解振动的一些判别准则.近年来, 许多文献研究了方程(1.1)的特殊情形即当$\alpha=1$(相当于中立项是线性的)时的振动准则.如Sun等[6]在条件

$ \int^{+\infty}_{t_{0}}a^{-1/\beta}(t){\rm d}t=+\infty $ (1.2)

下研究了二阶半线性时滞微分方程

$ [a(t)|x'(t)|^{\beta-1}x'(t)]'+q(t)|x(\delta(t))|^{\beta-1}x(\delta(t))=0 $ (1.3)

的振动性, 得到(1.3)式振动的若干充分条件.最近, 黄记洲等[7], 曾云辉等[8]在条件(1.2)或

$ \int^{+\infty}_{t_{0}}a^{-1/\beta}(t){\rm d}t<+\infty $ (1.4)

下研究了二阶Emden-Fowler型微分方程

$ \{a(t)|[x(t)+p(t)x(\tau(t))]'|^{\beta-1}[x(t)+p(t)x(\tau(t))]'\}'+q(t)|x(\delta(t))|^{\gamma-1}x(\delta(t))=0 $ (1.5)

的振动性, 得到了方程(1.5)若干新的振动准则, 推广并改进了文献[6]的一些结果, 但文献[7]有限制条件"$a'(t) \ge 0$", 且当$\beta<\gamma$时没有方程(1.5)的振动准则.本文将利用Riccati变换技术和大量不等式技巧来研究具有非线性中立项的微分方程(1.1)的振动性, 在(1.2)或(1.4)式成立的条件得到了方程(1.1)振动的一些新的准则, 推广并改进了现有文献中的一些结果, 同时使得其它许多已知结果均为我们结果的特例.

2 方程振动的判别定理

首先给出几个引理.其中引理2.1的结果由函数$f(x)=x^{\lambda}(0<\lambda\leqslant1)$的凹凸性容易得到, 故略去其证明; 而引理2.2和引理2.3是众所周知的结果, 也可在有关的文献中找到.

引理2.1  设$X, Y$为非负实数, 则当$0<\lambda\leqslant1$$X^{\lambda}+Y^{\lambda}\leqslant2^{1-\lambda}(X+Y)^{\lambda}$.

引理2.2  (贝努利不等式)对任意实数$x>-1$, 当$0\leqslant r\leqslant1$时, $(1+x)^{r}\leqslant1+rx$, 当$r\leqslant0$$r \ge 1$时, $(1+x)^{r} \ge 1+rx$.

引理2.3  (杨氏不等式)设$a>0$$b>0$均为常数, 则$ab\leqslant\frac{1}{p}a^{p}+\frac{1}{q}b^{q}$, 其中$p>1, q>1$$\frac{1}{p}+\frac{1}{q}=1$.

本文引入下列记号, 用到时不再进一步说明

$ z(t)=x(t)+p(t)x^{\alpha}(\tau(t)), \;\;\; \varphi_{+}(t)=\max\{\varphi(t), 0\}, \\ A(t)=\int^{+\infty}_{t}a^{-1/\beta}(s){\rm d}s,\;\;\; \Theta(t)=\int^{t}_{t_{0}}a^{-1/\beta}(s){\rm d}s. $

定理 2.1  设条件(1.2)成立, 若存在函数$\varphi\in C^{1}([t_{0}, +\infty), (0, +\infty))$使得当$\beta \ge \gamma$时有

$ \begin{equation} \limsup\limits_{t\rightarrow+\infty}\int^{t}_{t_{0}}\left\{L\varphi(s)Q(s)- \frac{\varphi(s)a^{\gamma/\beta}(\delta(s))}{(\gamma+1)^{\gamma+1}k^{(\gamma-\beta)/\beta}_{2}(\delta'(s))^{\gamma}} \left(\frac{\varphi'_{+}(s)}{\varphi(s)}\right)^{\gamma+1}\right\}{\rm d}s=+\infty, \end{equation} $ (2.1)

$\beta<\gamma$时有

$ \begin{equation} \limsup\limits_{t\rightarrow+\infty}\int^{t}_{t_{0}}\left\{L\varphi(s)Q(s)- \frac{(\beta/\gamma)^{\beta}\varphi(s)a(\delta(s))}{(\beta+1)^{\beta+1}k^{(\gamma-\beta)}_{1}(\delta'(s))^{\beta}} \left(\frac{\varphi'_{+}(s)}{\varphi(s)}\right)^{\beta+1}\right\}{\rm d}s=+\infty, \end{equation} $ (2.2)

其中函数$Q(t)=q(t)\left[1-\left(\alpha2^{1-\alpha}+\frac{(2^{1-\alpha})} {k_{1}}\right)p(\delta(t))\right]^{\gamma}$, $k_{i}>0\ (i=1, 2)$为常数, 则方程(1.1)是振动的.

  反证法.设方程(1.1)存在一个非振动解$x(t)$, 若$x(t)$为最终正解, 则存在$t_{1} \ge t_{0}$, 使得当$t \ge t_{1}$时, 有$x(t)>0, x(\tau(t))>0, x(\delta(t))>0$, 于是$z(t)>0$$z(t) \ge x(t)(t \ge t_{1})$.由方程(1.1), 得

$ \begin{equation} [a(t)|z'(t)|^{\beta-1}z'(t)]'\leqslant-Lq(t)x^{\gamma}(\delta(t))<0, \end{equation} $ (2.3)

注意到条件(1.2), 由(2.3)式容易推出$z'(t)>0\ (t \ge t_{1})$.

$z(t)$的定义及引理2.1和引理2.2, 得

$ \begin{eqnarray} x(t)&=&z(t)-p(t)x^{\alpha}(\tau(t))\\ &=&z(t)-p(t)[1+x^{\alpha}(\tau(t))]+p(t) \\ & \ge&z(t)-2^{1-\alpha}p(t)[1+x(\tau(t))]^{\alpha}+p(t)\\ & \ge &z(t)-2^{1-\alpha}p(t)[1+\alpha x(\tau(t))]+p(t) \\ &=&z(t)-\alpha2^{1-\alpha}p(t)x(\tau(t))+(1-2^{1-\alpha})p(t)\\ & \ge &z(t)-\alpha2^{1-\alpha}p(t)z(\tau(t))+(1-2^{1-\alpha})p(t) \\ & \ge &[1-\alpha2^{1-\alpha}p(t)]z(t)-(2^{1-\alpha}-1)p(t). \end{eqnarray} $ (2.4)

作广义的Riccati变换如下

$ \begin{equation} w(t)=\varphi(t)\frac{a(t)|z'(t)|^{\beta-1}z'(t)}{|z(\delta(t))|^{\gamma-1}z(\delta(t))} =\varphi(t)\frac{a(t)(z'(t))^{\beta}}{z^{\gamma}(\delta(t))}, \;\;\;t \ge t_{1}, \end{equation} $ (2.5)

显然有$w(t)>0(t \ge t_{1})$.注意到(2.3), (2.4)式及$a(t)(z'(t))^{\beta}\leqslant a(\delta(t))(z'(\delta(t)))^{\beta}$, 由(2.5)式, 就有

$ \begin{eqnarray} w'(t)&=&\varphi'(t)\frac{a(t)(z'(t))^{\beta}}{z^{\gamma}(\delta(t))}+ \varphi(t)\frac{[a(t)(z'(t))^{\beta}]'z^{\gamma}(\delta(t))-a(t)(z'(t))^{\beta}\gamma z^{\gamma-1}(\delta(t))z'(\delta(t))\delta'(t)}{z^{2\gamma}(\delta(t))} \\ &\leqslant&\frac{\varphi'(t)}{\varphi(t)}w(t)-\varphi(t)\frac{Lq(t)x^{\gamma}(\delta(t))}{z^{\gamma}(\delta(t))}- \gamma\frac{\varphi(t)a(t)(z'(t))^{\beta}\delta'(t)}{z^{\gamma+1}(\delta(t))}\frac{a^{1/\beta}(t)z'(t)}{a^{1/\beta}(\delta(t))} \\ &\leqslant&\frac{\varphi'(t)}{\varphi(t)}w(t)-L\varphi(t)q(t)\left[\frac{(1-\alpha2^{1-\alpha}p(\delta(t)))z(\delta(t)) -(2^{1-\alpha}-1)p(\delta(t))}{z(\delta(t))}\right]^{\gamma} \\ &&-\gamma\frac{\varphi(t)a^{(\beta+1)/\beta}(t)(z'(t))^{\beta+1}\delta'(t)}{z^{\gamma+1}(\delta(t))a^{1/\beta}(\delta(t))}. \end{eqnarray} $ (2.6)

下面根据$\beta$$\gamma$的取值分两种情形考虑: (ⅰ) $\beta \ge \gamma$, (ⅱ) $\beta<\gamma$.

情形(ⅰ)  $\beta \ge \gamma$.因为$z(t)>0, z'(t)>0(t \ge t_{1})$, 所以

$ z(\delta(t)) \ge z(\delta(t_{1}))=k_{1}, \;\;\;t \ge t_{1}, $ (2.7)

其中$k_{1}>0$为常数.又由$z'(t)>0$及(2.3)式知, 当$t \ge t_{1}$时, $a(t)(z'(t))^{\beta}\leqslant a(t_{1})(z'(t_{1}))^{\beta}=k_{2}$ (其中$k_{2}>0$为常数), 由此得$z'(t)\leqslant\frac{k^{1/\beta}_{2}}{a^{1/\beta}(t)}$, 即

$ (z'(t))^{(\gamma-\beta)/\gamma} \ge \frac{k^{(\gamma-\beta)/\beta\gamma}_{2}}{a^{(\gamma-\beta)/\beta\gamma}(t)}, \;\;\;t \ge t_{1}. $ (2.8)

于是, 由(2.6)式, 并注意到(2.5)、(2.7)及(2.8)式, 可得

$ \begin{eqnarray*} w'(t)&\leqslant&\frac{\varphi'(t)}{\varphi(t)}w(t)- L\varphi(t)q(t)\left[(1-\alpha2^{1-\alpha}p(\delta(t)))-\frac{(2^{1-\alpha}-1)p(\delta(t))}{k_{1}}\right]^{\gamma} \\ &&-\frac{\gamma(z'(t))^{(\gamma-\beta)/\gamma}\delta'(t)a^{(\gamma-\beta)/\beta\gamma}(t)}{\varphi^{1/\gamma}(t)a^{1/\beta}(\delta(t))} w^{\frac{\gamma+1}{\gamma}}(t) \\ &\leqslant&\frac{\varphi'_{+}(t)}{\varphi(t)}w(t)-L\varphi(t)Q(t)- \frac{\gamma k^{(\gamma-\beta)/\beta\gamma}_{2}\delta'(t)}{\varphi^{1/\gamma}(t)a^{1/\beta}(\delta(t))}w^{\frac{\gamma+1}{\gamma}}(t). \end{eqnarray*} $

在引理2.3中的不等式$ab-\frac{1}{p}a^{p}\leqslant\frac{1}{q}b^{q}$中令$p=\frac{\gamma+1}{\gamma}, q=\gamma+1$, 且

$ a=\frac{k^{(\gamma-\beta)/\beta(\gamma+1)}_{2}[(\gamma+1)\delta'(t)]^{\gamma/(\gamma+1)}} {\varphi^{1/(\gamma+1)}(t)a^{\gamma/\beta(\gamma+1)}(\delta(t))}w(t), \;\;\; b=\frac{\varphi^{1/(\gamma+1)}(t)a^{\gamma/\beta(\gamma+1)}(\delta(t))} {k^{(\gamma-\beta)/\beta(\gamma+1)}_{2}[(\gamma+1)\delta'(t)]^{\gamma/(\gamma+1)}}\frac{\varphi'_{+}(t)}{\varphi(t)}, $

就有

$ \frac{\varphi'_{+}(t)}{\varphi(t)}w(t)- \frac{\gamma k^{(\gamma-\beta)/\beta\gamma}_{2}\delta'(t)}{\varphi^{1/\gamma}(t)a^{1/\beta}(\delta(t))}w^{\frac{\gamma+1}{\gamma}}(t) \leqslant\frac{\varphi(t)a^{\gamma/\beta}(\delta(t))}{(\gamma+1)^{\gamma+1}k^{(\gamma-\beta)/\beta}_{2}(\delta'(t))^{\gamma}} \left(\frac{\varphi'_{+}(t)}{\varphi(t)}\right)^{\gamma+1}. $

于是

$ w'(t)\leqslant-L\varphi(t)Q(t)+\frac{\varphi(t)a^{\gamma/\beta}(\delta(t))}{(\gamma+1)^{\gamma+1}k^{(\gamma-\beta)/\beta}_{2}(\delta'(t))^{\gamma}} \left(\frac{\varphi'_{+}(t)}{\varphi(t)}\right)^{\gamma+1}, $

所以

$ \int^{t}_{t_{1}}\left\{L\varphi(s)Q(s)- \frac{\varphi(s)a^{\gamma/\beta}(\delta(s))}{(\gamma+1)^{\gamma+1}k^{(\gamma-\beta)/\beta}_{2}(\delta'(s))^{\gamma}} \left(\frac{\varphi'_{+}(s)}{\varphi(s)}\right)^{\gamma+1}\right\}{\rm d}s\leqslant-w(t)+w(t_{1})\leqslant w(t_{1}), $

这与(2.1)式矛盾.

情形(ⅱ)  $\beta<\gamma$.注意到(2.5)、(2.7)式及引理2.3, 由(2.6)式, 得

$ \begin{eqnarray*} w'(t)&\leqslant&\frac{\varphi'(t)}{\varphi(t)}w(t)- L\varphi(t)q(t)\left[(1-\alpha2^{1-\alpha}p(\delta(t)))-\frac{(2^{1-\alpha}-1)p(\delta(t))}{k_{1}}\right]^{\gamma} \\ &&-\frac{\gamma z^{(\gamma-\beta)/\beta}(\delta(t))\delta'(t)}{\varphi^{1/\beta}(t)a^{1/\beta}(\delta(t))}w^{\frac{\beta+1}{\beta}}(t) \\ &\leqslant&-L\varphi(t)Q(t)+\frac{(\beta/\gamma)^{\beta}\varphi(t)a(\delta(t))}{(\beta+1)^{\beta+1}k^{(\gamma-\beta)}_{1}(\delta'(t))^{\beta}} \left(\frac{\varphi'_{+}(t)}{\varphi(t)}\right)^{\beta+1}, \end{eqnarray*} $

上式两边从$t_{1}$$t(t \ge t_{1})$积分, 得

$ \int^{t}_{t_{1}}\left\{L\varphi(s)Q(s)- \frac{(\beta/\gamma)^{\beta}\varphi(s)a(\delta(s))}{(\beta+1)^{\beta+1}k^{(\gamma-\beta)}_{1}(\delta'(s))^{\beta}} \left(\frac{\varphi'_{+}(s)}{\varphi(s)}\right)^{\beta+1}\right\}{\rm d}s\leqslant-w(t)+w(t_{1})\leqslant w(t_{1}), $

这与(2.2)式矛盾.

另一方面, 如果$x(t)$是方程(1.1)的最终负解, 则令$y(t)=-x(t)$, 于是方程(1.1)就可转化为

$ \{a(t)|[y(t)+p(t)y^{\alpha}(\tau(t))]'|^{\beta-1}[y(t)+p(t)y^{\alpha}(\tau(t))]'\}' +q(t)f^{*}(|y(\delta(t))|^{\gamma-1}y(\delta(t)))=0, (1.1)^{*} $

其中函数$f^{*}(|y(\delta(t))|^{\gamma-1}y(\delta(t)))=-f(|y(\delta(t))|^{\gamma-1}(-y(\delta(t))))$.很明显, $f^{*}(u)=-f(-u)$具有与$f(u)$完全相同的性质, 并且$y(t)$是方程$(1.1)^{*}$的最终正解, 因此, 用与上面完全相同的方法可推出矛盾.定理证毕.

推论 2.1  设条件(1.2)成立, 如果

$ \begin{equation} \limsup\limits_{t\rightarrow+\infty}\int^{t}_{t_{0}}\left\{\Theta^{\beta}(\delta(s))q(s)-\frac{[\beta/(\beta+1)]^{\beta+1}\delta'(s)} {a^{1/\beta}(\delta(s))\Theta(\delta(s))}\right\}{\rm d}s=+\infty, \end{equation} $ (2.9)

则方程(1.3)是振动的.

  在方程(1.1)中令$f(u)=u, p(t)\equiv0, \beta=\gamma$, 并在定理2.1中取$\varphi(t)=\Theta^{\beta}(\delta(t))$即得.

注 2.1  推论2.1就是Sun等在文献[6]得到的关于方程(1.3)振动的判别定理.若在定理2.1中取$\varphi(t)=\Theta(\delta(t))$, 还可得到以下一系列结果.

推论 2.2  设条件(1.2)成立, 如果$\beta=\gamma$

$ \limsup\limits_{t\rightarrow+\infty}\int^{t}_{t_{0}}\left\{L\Theta(\delta(s))Q(s)-\frac{\delta'(s)} {(\beta+1)^{\beta+1}a^{1/\beta}(\delta(s))\Theta^{\beta}(\delta(s))}\right\}{\rm d}s=+\infty, $ (2.10)

其中函数$Q(t)$同定理2.1, 则方程(1.1)是振动的.

推论 2.3  设条件(1.2)成立, 且$\beta=\gamma\leqslant1$.如果当$\beta<1$

$ \liminf\limits_{t\rightarrow+\infty}\frac{1}{\Theta^{1-\beta}(\delta(t))}\int^{t}_{t_{0}}\Theta(\delta(s))Q(s){\rm d}s >\frac{1}{L(\beta+1)^{\beta+1}(1-\beta)}, $ (2.11)

$\beta=1$

$ \liminf\limits_{t\rightarrow+\infty}\frac{1}{\ln\Theta(\delta(t))}\int^{t}_{t_{0}}\Theta(\delta(s))Q(s){\rm d}s >\frac{1}{4L}, $ (2.12)

其中函数$Q(t)$同定理2.1, 则方程(1.1)是振动的.

  当$\beta<1$时, 由(2.11)式知, 存在常数$\varepsilon>0$, 对充分大的实数$t$, 有

$ \frac{1}{\Theta^{1-\beta}(\delta(t))}\int^{t}_{t_{0}}\Theta(\delta(s))Q(s){\rm d}s \ge \frac{1}{L(\beta+1)^{\beta+1}(1-\beta)}+\varepsilon, $

这就意味着

$ \int^{t}_{t_{0}}\Theta(\delta(s))Q(s){\rm d}s-\frac{\Theta^{1-\beta}(\delta(t))}{L(\beta+1)^{\beta+1}(1-\beta)} \ge \varepsilon\Theta^{1-\beta}(\delta(t)), $

于是, 由上式并注意到条件(1.2), 则有

$ \begin{eqnarray*} &&\int^{t}_{t_{0}}\left\{\Theta(\delta(s))Q(s)-\frac{\delta'(s)}{L(\beta+1)^{\beta+1}a^{1/\beta}(\delta(s))\Theta^{\beta}(\delta(s))}\right\}{\rm d}s \\ &=&\int^{t}_{t_{0}}\Theta(\delta(s))Q(s){\rm d}s-\frac{1}{L(\beta+1)^{\beta+1}}\left[\frac{\Theta^{1-\beta}(\delta(s))}{1-\beta}\right]^{t}_{t_{0}} \\ &=&\int^{t}_{t_{0}}\Theta(\delta(s))Q(s){\rm d}s-\frac{\Theta^{1-\beta}(\delta(t))}{L(\beta+1)^{\beta+1}(1-\beta)} +\frac{\Theta^{1-\beta}(\delta(t_{0}))}{L(\beta+1)^{\beta+1}(1-\beta)} \\ & \ge &\varepsilon\Theta^{1-\beta}(\delta(t))+\frac{\Theta^{1-\beta}(\delta(t_{0}))}{L(\beta+1)^{\beta+1}(1-\beta)}\rightarrow+\infty\;\;\;(t\rightarrow+\infty), \end{eqnarray*} $

所以, 由推论2.2知方程(1.1)是振动的.

$\beta=1$时, 由于$\frac{{\rm d}}{{\rm d}s}[\ln\Theta(\delta(s))]=\frac{\delta'(s)}{\Theta(\delta(s))a(\delta(s))}, $余下部分类似可证.证毕.

推论 2.4  设条件(1.2)成立, 且$\beta=\gamma\leqslant1$.如果

$ \liminf\limits_{t\rightarrow+\infty}\frac{Q(t)\Theta^{\beta+1}(\delta(t))a^{1/\beta}(\delta(t))}{\delta'(t)}>\frac{1}{L(\beta+1)^{\beta+1}}, $ (2.13)

其中函数$Q(t)$同定理2.1, 则方程(1.1)是振动的.

  若$\beta<1$, 则由(2.13)式知, 存在常数$\varepsilon>0$, 对充分大的实数$t$, 有

$ \frac{Q(t)\Theta^{\beta+1}(\delta(t))a^{1/\beta}(\delta(t))}{\delta'(t)} \ge \frac{1}{L(\beta+1)^{\beta+1}}+\varepsilon, $

上式两边同乘以$\frac{\delta'(t)}{\Theta^{\beta}(\delta(t))a^{1/\beta}(\delta(t))}$, 得

$ \begin{eqnarray*} &&L\Theta(\delta(t))Q(t)-\frac{\delta'(t)}{(\beta+1)^{\beta+1}a^{1/\beta}(\delta(t))\Theta^{\beta}(\delta(t))} \\ & \ge &\frac{L\varepsilon\delta'(t)}{\Theta^{\beta}(\delta(t))a^{1/\beta}(\delta(t))} =\frac{L\varepsilon}{1-\beta}\frac{{\rm d}}{{\rm d}t}\left[\Theta^{1-\beta}(\delta(t))\right], \end{eqnarray*} $

由上式容易验证(2.10)成立, 于是由推论2.2知, 方程(1.1)是振动的.

$\beta=1$时, 由于$\frac{{\rm d}}{{\rm d}t}[\ln\Theta(\delta(t))]=\frac{\delta'(t)}{\Theta(\delta(t))a(\delta(t))}$, 余下部分类似可证.证毕.

定理 2.2  设条件(1.4)成立, $1-\alpha2^{1-\alpha}p(t)\frac{A(\tau(t))}{A(t)}>0$, 且存在函数$\varphi\in C^{1}([t_{0}, +\infty), $ $(0, +\infty))$使得当$\beta \ge \gamma$时(2.1)式成立, 当$\beta<\gamma$时(2.2)式成立.如果

$ \limsup\limits_{t\rightarrow+\infty}\int^{t}_{t_{0}}\left\{LA^{\beta}(s)\Psi(s)\pi(s)-\frac{[\beta/(\beta+1)]^{\beta+1}} {a^{1/\beta}(s)A(s)}\right\}{\rm d}s=+\infty, $ (2.14)

其中$\Psi(t)=q(t)\left[1-\left(\alpha2^{1-\alpha}\frac{A(\tau(\delta(t)))}{A(\delta(t))}+\frac{(2^{1-\alpha}-1)}{m_{1}A(t)}\right)p(\delta(t))\right]^{\gamma}$,

$ \pi(t)=\left\{\begin{array}{ll} m^{\gamma-\beta}_{1}A^{\gamma-\beta}(t), &\beta<\gamma, \\ 1, &\beta=\gamma, \\ m^{\gamma-\beta}_{2}, &\beta>\gamma, \end{array} \right. $

$m_{1}>0$$m_{2}>0$为某常数, 则方程(1.1)是振动的.

  反证法, 设方程(1.1)存在一个非振动解$x(t)$, 不妨设$x(t)$为最终正解(当$x(t)$为最终负解时类似可证), 则$\exists t_{1} \ge t_{0}$, 使得当$t \ge t_{1}$时, 有$x(t)>0, x(\tau(t))>0, x(\delta(t))>0$, 从而$z(t)>0(t \ge t_{1})$.由定理2.1的证明知$a(t)|z'(t)|^{\beta-1}z'(t)$是严格单调减少的且最终定号, 从而$z'(t)$最终为正或最终为负.因此, 只需考虑下列两种情形

(a) 当$t \ge t_{1}$$z'(t)>0$; (b)当$t \ge t_{1}$$z'(t)<0$.

情形(a) $z'(t)>0(t \ge t_{1})$.同定理2.1的证明, 可得这种情形下方程(1.1)是振动的.

情形(b) $z'(t)<0(t \ge t_{1})$.定义函数$v(t)$

$ v(t)=\frac{a(t)|z'(t)|^{\beta-1}z'(t)}{z^{\beta}(t)}=\frac{a(t)(-z'(t))^{\beta-1}z'(t)}{z^{\beta}(t)}, t \ge t_{1}, $ (2.15)

则有$v(t)>0(t \ge t_{1})$.由(2.3)式知, 对$s \ge t \ge t_{1}$, 有$a(s)|z'(s)|^{\beta-1}z'(s)\leqslant a(t)|z'(t)|^{\beta-1}z'(t)$, 即$a(s)(-z'(s))^{\beta} \ge a(t)(-z'(t))^{\beta}$, 亦即$z'(s)\leqslant\frac{a^{1/\beta}(t)z'(t)}{a^{1/\beta}(s)}$, 于是进一步就有

$ z(u)-z(t)\leqslant a^{1/\beta}(t)z'(t)\int^{u}_{t}a^{-1/\beta}(s){\rm d}s, $

$u\rightarrow+\infty$, 得$z(t)+a^{1/\beta}(t)z'(t)A(t) \ge 0$, 即$-1\leqslant\frac{a^{1/\beta}(t)z'(t)}{z(t)}A(t)<0$, 由此进一步可得

$ -1\leqslant v(t)A^{\beta}(t)<0. $ (2.16)

另一方面, 由

$ \frac{{\rm d}}{{\rm d}t}\frac{z(t)}{A(t)}=\frac{z'(t)A(t)-z(t)[-a^{-1/\beta}(t)]}{A^{2}(t)}=\frac{a^{1/\beta}(t)z'(t)A(t)+z(t)}{a^{1/\beta}(t)A^{2}(t)} \ge 0, $

$\frac{z(\tau(t))}{A(\tau(t))}\leqslant\frac{z(t)}{A(t)}$, 即

$ z(\tau(t))\leqslant\frac{A(\tau(t))}{A(t)}z(t). $ (2.17)

于是, 由$z(t)$的定义及引理2.1, 引理2.2及(2.17)式, 得

$ \begin{eqnarray} x(t)&=&z(t)-p(t)x^{\alpha}(\tau(t))\\ &=&z(t)-p(t)[1+x^{\alpha}(\tau(t))]+p(t) \\ & \ge&z(t)-2^{1-\alpha}p(t)[1+x(\tau(t))]^{\alpha}+p(t)\\ & \ge&z(t)-2^{1-\alpha}p(t)[1+\alpha x(\tau(t))]+p(t) \\ &=&z(t)-\alpha2^{1-\alpha}p(t)x(\tau(t))+(1-2^{1-\alpha})p(t)\\ & \ge &z(t)-\alpha2^{1-\alpha}p(t)z(\tau(t))+(1-2^{1-\alpha})p(t) \\ & \ge &\left[1-\alpha2^{1-\alpha}p(t)\frac{A(\tau(t))}{A(t)}\right]z(t)-(2^{1-\alpha}-1)p(t). \end{eqnarray} $ (2.18)

由(2.15)式, 并依次注意到(2.3)式和(2.18)式及$z(\delta(t)) \ge z(t)$, 得

$ \begin{eqnarray} v'(t)&=&\frac{[a(t)|z'(t)|^{\beta-1}z'(t)]'}{z^{\beta}(t)} -\frac{a(t)|z'(t)|^{\beta-1}z'(t)\beta z^{\beta-1}(t)z'(t)}{z^{2\beta}(t)} \\ &\leqslant&-Lq(t)\frac{[(1-\alpha2^{1-\alpha}p(\delta(t))\frac{A(\tau(\delta(t)))}{A(\delta(t))})-\frac{(2^{1-\alpha}-1)}{z(t)}p(\delta(t))]^{\gamma}} {z^{\beta-\gamma}(t)} -\frac{\beta(-v(t))^{(\beta+1)/\beta}}{a^{1/\beta}(t)}. \end{eqnarray} $ (2.19)

由(2.3)式知, 当$s \ge t_{1}$时, $a(s)|z'(s)|^{\beta-1}z'(s)\leqslant a(t_{1})|z'(t_{1})|^{\beta-1}z'(t_{1})=-m^{\beta}_{1}$ (常数$m_{1}>0$), 即$z'(s)\leqslant-m_{1}a^{-1/\beta}(s)$, 两边积分, 得$z(u)-z(t)\leqslant-m_{1}\int^{u}_{t}a^{-1/\beta}(s){\rm d}s$, 令$u\rightarrow+\infty$, 则有

$ z(t) \ge m_{1}\int^{+\infty}_{t}a^{-1/\beta}(s){\rm d}s=m_{1}A(t). $

$\beta>\gamma$时, 由$z(t)>0, z'(t)<0(t \ge t_{1})$知, $z(t)\leqslant z(t_{1})=m_{2}$, 即$\frac{1}{z^{\beta-\gamma}(t)} \ge \frac{1}{m^{\beta-\gamma}_{2}}$.

$\beta<\gamma$时, $\frac{1}{z^{\beta-\gamma}(t)} \ge m^{\gamma-\beta}_{1}A^{\gamma-\beta}(t)$.

$\beta=\gamma$时, $\frac{1}{z^{\beta-\gamma}(t)}=1$.

于是, 综合上述3种情形, 注意到函数$\pi(t)$$\Psi(t)$的定义, 由(2.19)式, 可得

$ v'(t)\leqslant-L\Psi(t)\pi(t)-\frac{\beta(-v(t))^{(\beta+1)/\beta}}{a^{1/\beta}(t)}. $ (2.20)

将上式中的$t$改成$s$, 再两边同乘以$A^{\beta}(s)$, 并对$s$$t_{1}$$t(t \ge t_{1})$积分, 并利用分部积分公式及引理2.3, 可得

$ \begin{eqnarray*} &&\int^{t}_{t_{1}}LA^{\beta}(s)\Psi(s)\pi(s){\rm d}s\\ &\leqslant&-\int^{t}_{t_{1}}A^{\beta}(s)v'(s){\rm d}s -\int^{t}_{t_{1}}A^{\beta}(s)\frac{\beta(-v(s))^{(\beta+1)/\beta}}{a^{1/\beta}(s)}{\rm d}s \\ &=&-\left[A^{\beta}(s)v(s)\right]^{t}_{t_{1}}+\int^{t}_{t_{1}}v(s)\beta A^{\beta-1}(s)A'(s){\rm d}s -\int^{t}_{t_{1}}\frac{\beta A^{\beta}(s)}{a^{1/\beta}(s)}(-v(s))^{(\beta+1)/\beta}{\rm d}s \\ &=&A^{\beta}(t_{1})v(t_{1})-A^{\beta}(t)v(t)+\int^{t}_{t_{1}}\left[\frac{\beta A^{\beta-1}(s)}{a^{1/\beta}(s)}(-v(s)) -\frac{\beta A^{\beta}(s)}{a^{1/\beta}(s)}(-v(s))^{(\beta+1)/\beta}\right]{\rm d}s \\ &\leqslant& A^{\beta}(t_{1})v(t_{1})-A^{\beta}(t)v(t)+ \int^{t}_{t_{1}}\frac{[\beta/(\beta+1)]^{\beta+1}}{a^{1/\beta}(s)A(s)}{\rm d}s, \end{eqnarray*} $

注意到(2.16)式, 于是就有

$ \int^{t}_{t_{1}}\left\{LA^{\beta}(s)\Psi(s)\pi(s)-\frac{[\beta/(\beta+1)]^{\beta+1}}{a^{1/\beta}(s)A(s)}\right\}{\rm d}s\leqslant A^{\beta}(t_{1})v(t_{1})+1, $

这与(2.7)式矛盾.定理证毕.

定理 2.3  设条件(1.4)成立, $1-\alpha2^{1-\alpha}p(t)\frac{A(\tau(t))}{A(t)}>0$, 且存在函数$\varphi\in C^{1}([t_{0}, +\infty), $ $(0, +\infty))$使得当$\beta \ge \gamma$时(2.1)式成立, 当$\beta<\gamma$时(2.2)式成立.如果

$ \limsup\limits_{t\rightarrow+\infty}\int^{t}_{t_{0}}\Psi(s)\pi(s)A^{\beta+1}(s){\rm d}s=+\infty, $ (2.21)

其中函数$\Psi(t)$$\pi(t)$的定义如定理2.2, 而$m_{1}>0$为某常数, 则方程(1.1)是振动的.

  同定理2.2的证明, 可得(2.20)式, 将(2.20)式中的$t$改成$s$, 两边同乘以$A^{\beta+1}(s)$, 再对$s$$t_{1}$$t(t \ge t_{1})$积分, 并利用分部积分公式, 可得

$ \begin{eqnarray} &&\int^{t}_{t_{1}}L\Psi(s)\pi(s)A^{\beta+1}(s){\rm d}s\\ &\leqslant&-\int^{t}_{t_{1}}A^{\beta+1}(s)v'(s){\rm d}s -\int^{t}_{t_{1}}\frac{\beta A^{\beta+1}(s)}{a^{1/\beta}(s)}(-v(s))^{(\beta+1)/\beta}{\rm d}s \\ &=&-\left[A^{\beta+1}(s)v(s)\right]^{t}_{t_{1}}+\int^{t}_{t_{1}}v(s)(\beta+1)A^{\beta}(s)A'(s){\rm d}s \\ && -\int^{t}_{t_{1}}\frac{\beta A^{\beta+1}(s)}{a^{1/\beta}(s)}(-v(s))^{(\beta+1)/\beta}{\rm d}s \\ &=&A^{\beta+1}(t_{1})v(t_{1})+A^{\beta+1}(t)(-v(t))+(\beta+1)\int^{t}_{t_{1}}\frac{A^{\beta}(s)(-v(s))}{a^{1/\beta}(s)}{\rm d}s \\ && -\beta\int^{t}_{t_{1}}\frac{A^{\beta+1}(s)(-v(s))^{\frac{\beta+1}{\beta}}}{a^{1/\beta}(s)}{\rm d}s. \end{eqnarray} $ (2.22)

利用(2.16)式可得

$ |A^{\beta+1}(t)(-v(t))|=|A^{\beta}(t)v(t)|A(t)\leqslant A(t)<+\infty, $
$ \begin{eqnarray*} \left|\int^{t}_{t_{1}}\frac{A^{\beta}(s)(-v(s))}{a^{1/\beta}(s)}{\rm d}s\right| &\leqslant&\int^{t}_{t_{1}}\frac{|A^{\beta}(s)v(s)|}{a^{1/\beta}(s)}{\rm d}s \leqslant\int^{t}_{t_{1}}\frac{1}{a^{1/\beta}(s)}{\rm d}s\\ &\leqslant&\int^{+\infty}_{t_{1}}\frac{1}{a^{1/\beta}(s)}{\rm d}s<+\infty, \end{eqnarray*} $
$ \begin{eqnarray*} \left|\int^{t}_{t_{1}}\frac{A^{\beta+1}(s)(-v(s))^{\frac{\beta+1}{\beta}}}{a^{1/\beta}(s)}{\rm d}s\right| &\leqslant&\int^{t}_{t_{1}}\frac{|A^{\beta}(s)v(s)|^{\frac{\beta+1}{\beta}}}{a^{1/\beta}(s)}{\rm d}s \leqslant\int^{t}_{t_{1}}\frac{1}{a^{1/\beta}(s)}{\rm d}s\\ &\leqslant&\int^{+\infty}_{t_{1}}\frac{1}{a^{1/\beta}(s)}{\rm d}s<+\infty, \end{eqnarray*} $

这样一来, 由(2.22)式就有

$ \limsup\limits_{t\rightarrow+\infty}\int^{t}_{t_{1}}L\Psi(s)\pi(s)A^{\beta+1}(s){\rm d}s=+\infty, $

这与(2.21)式矛盾, 定理证毕.

注 2.2  从定理2.1-2.3的结果可以看出, 当$\beta<\gamma$$\beta>\gamma$时方程(1.1)的振动准则是不同的, 但当$\beta=\gamma$时(2.1)式和(2.2)式是一样的.若$f(u)=u$$\alpha=1$ (即中立项是线性的), 则由定理2.1可得文献[7]中的定理2.2, 但我们的结果没有限制条件"$a'(t) \ge 0$", 而且$\beta \ge \gamma$$\beta\leqslant\gamma$两种情形均有方程(1.1)的振动结果; 若$\alpha=1$$\gamma=1$, 则由定理2.2即得文献[5]中的定理2.1, 但我们没有限制条件"对$t \ge t_{0}$$p'(t) \ge 0, \delta(t)\leqslant t-\tau\ (\tau>0$为常数)".因此, 本文所得定理的条件是较宽松的.此外, 在条件(1.4)下且$\alpha=1$ (即中立项是线性的)的情形, 文献[7]和[8]只能得出方程所有解$x(t)$或者振动或者$\lim\limits_{t\rightarrow+\infty}x(t)=0$, 而不能确定方程的振动性.

3 例子和应用

例 3.1  考虑如下二阶微分方程

$ (x(t)+\frac{1}{5}x(\frac{t}{5}))''+\frac{q_{0}}{t^{2}}x(t)=0, t \ge 1, $ (3.1)

其中常数$q_{0}>0$.令$a(t)=1, p(t)=1/5, q(t)=q_{0}/t^{2}, \tau(t)=t/5, \delta(t)=t, f(u)=u, \alpha=1, $ $\beta=1, \gamma=1$, 容易验证条件(H$_{1}$)-(H$_{3}$)及(1.2)均满足.现取$\varphi(t)=t$, 注意到$L=1$, 则当$q_{0}>5/16=0.3125$

$ \begin{eqnarray*} &&\limsup\limits_{t\rightarrow+\infty}\int^{t}_{t_{0}}\left\{L\varphi(s)Q(s)- \frac{\varphi(s)a^{\gamma/\beta}(\delta(s))}{(\gamma+1)^{\gamma+1}k^{(\gamma-\beta)/\beta}_{2}(\delta'(s))^{\gamma}} \left(\frac{\varphi'_{+}(s)}{\varphi(s)}\right)^{\gamma+1}\right\}{\rm d}s \\ &=&\limsup\limits_{t\rightarrow+\infty}\int^{t}_{1}\left\{s\frac{q_{0}}{s^{2}}\left[1-\frac{1}{5}\right] -\frac{s}{2^{2}}\left(\frac{1}{s}\right)^{2}\right\}{\rm d}s =\frac{4}{5}\left(q_{0}-\frac{5}{16}\right)\limsup\limits_{t\rightarrow+\infty}\int^{t}_{1}\frac{1}{s}{\rm d}s=+\infty, \end{eqnarray*} $

所以条件(2.1)成立, 于是由定理2.1知, 当$q_{0}>0.3125$时方程(3.1)是振动的.

注 3.1  若用文献[10]中的定理3.4来判定方程(3.1)的振动性, 则因为当$q_{0}>2.5$时, 有

$ \begin{eqnarray*} &&\limsup\limits_{t\rightarrow+\infty}\int^{t}_{t_{0}}\left\{\frac{\varphi(s)q(s)}{2^{\gamma-1}}- \frac{(1+p^{\gamma}_{0}/\tau_{0})(\varphi'_{+}(s))^{\gamma+1}a(\delta(s))}{(\gamma+1)^{\gamma+1}[\tau_{0}\varphi(s)]^{\gamma}}\right\}{\rm d}s \\ &=&(q_{0}-2.5)\limsup\limits_{t\rightarrow+\infty}\int^{t}_{1}\frac{1}{s}{\rm d}s=+\infty, \end{eqnarray*} $

所以由文献[10]中的定理3.4知, 当$q_{0}>2.5$时方程(3.1)是振动的.此外, 我们也可以用文献[11]中的定理3.1来判定方程(3.1)的振动性:对常数$\varepsilon\in(0, 1)$, 由于当$q_{0}>\frac{6+\varepsilon}{20(1-\varepsilon)}$时, 有

$ \begin{eqnarray*} &&\int^{+\infty}_{t_{0}}\left\{\frac{(1-\varepsilon)^{\alpha}\varphi(t)q(t)}{[1+p_{0}(1+\varepsilon)]^{\alpha}} -\frac{(\varphi_{+}'(t))^{\alpha+1}a(\delta(t))}{(\alpha+1)^{\alpha+1}[\varphi(t)\delta'(t)]^{\alpha}}\right\}{\rm d}t \\ &=&\frac{5(1-\varepsilon)}{6+\varepsilon}\left[q_{0}-\frac{6+\varepsilon}{20(1-\varepsilon)}\right]\int^{+\infty}_{1}\frac{1}{t}{\rm d}t=+\infty, \end{eqnarray*} $

所以由文献[11]中的定理3.1知, 当$q_{0}>\frac{6+\varepsilon}{20(1-\varepsilon)}$时方程(3.1)是振动的.本例说明, 本文所获得的振动准则是较"精确的", 其特殊情形即当$\alpha=1$时的结果改进了文献[10]和[11]中的有关结论.

例 3.2  考虑具拟线性中立项的二阶微分方程

$ \Big\{t\Big[(x(t)+\frac{1}{5}\sqrt[3]{x(t/2)})'\Big]^{5/3}\Big\}'+\frac{q_{0}}{t}x^{7/5}(t/3)=0, \;\;\; t \ge 1, $ (3.2)

其中常数$q_{0}>0$.令$\alpha=1/3, \beta=5/3, \gamma=7/5, a(t)=t, p(t)=1/5, q(t)=q_{0}/t, f(u)=u, $ $\tau(t)=t/2, \delta(t)=t/3$, 则条件(H$_{1}$)-(H$_{3}$)及(1.2)式显然均满足.取$\varphi(t)=1$, 注意到$\beta>\gamma$$L=1$, 用定理2.1的第1种情形, 因为

$ \begin{eqnarray*} &&\limsup\limits_{t\rightarrow+\infty}\int^{t}_{t_{0}}\left\{L\varphi(s)Q(s)- \frac{\varphi(s)a^{\gamma/\beta}(\delta(s))}{(\gamma+1)^{\gamma+1}k^{(\gamma-\beta)/\beta}_{2}(\delta'(s))^{\gamma}} \left(\frac{\varphi'_{+}(s)}{\varphi(s)}\right)^{\gamma+1}\right\}{\rm d}s \\ &=&\limsup\limits_{t\rightarrow+\infty}\int^{t}_{1}\left\{\frac{q_{0}}{s}\left[1-\left(\frac{1}{3}2^{2/3} +\frac{(2^{2/3}-1)}{k_{1}}\right)\frac{1}{5}\right]^{7/5}-0\right\}{\rm d}s=+\infty, \end{eqnarray*} $

所以由定理2.1知, 方程(3.2)是振动的.

例 3.3  考虑具非线性中立项的二阶时滞微分方程

$ \Big[t^{2}(x(t)+\frac{1}{t^{2}}x^{3/5}(t/2))'\Big]'+\lambda f(x(t/2))=0, \;\;\;t \ge 1, $ (3.3)

这里常数$\lambda>0$.令$\alpha=3/5, \beta=1, \gamma=1, a(t)=t^{2}, p(t)=1/t^{2}, q(t)=\lambda, \tau(t)=t/2, \delta(t)=t/2$, 并令$f(u)=u[\ln(1+u^{4})]$, 则条件(H$_{1}$)-(H$_{3}$)及(1.4)式显然均满足.取$\varphi(t)=1$, 则由定理2.2(注意到此时$L=1, \beta=\gamma=1$, 且$A(t)=\int^{+\infty}_{t}a^{-1/\beta}(s){\rm d}s=1/t$), 有

$ \begin{eqnarray*} &&\limsup\limits_{t\rightarrow+\infty}\int^{t}_{t_{0}}\left\{L\varphi(s)Q(s)- \frac{\varphi(s)a^{\gamma/\beta}(\delta(s))}{(\gamma+1)^{\gamma+1}k^{(\gamma-\beta)/\beta}_{2}(\delta'(s))^{\gamma}} \left(\frac{\varphi'_{+}(s)}{\varphi(s)}\right)^{\gamma+1}\right\}{\rm d}s \\ &=&\limsup\limits_{t\rightarrow+\infty}\int^{t}_{1}\left\{\lambda\left[1-\left(\frac{3}{5}2^{2/5} +\frac{(2^{2/5}-1)}{k_{1}}\right)\frac{4}{s^{2}}\right]-0\right\}{\rm d}s=+\infty, \end{eqnarray*} $

且当$\lambda>1/4$

$ \begin{eqnarray*} &&\limsup\limits_{t\rightarrow+\infty}\int^{t}_{t_{0}}\left\{LA^{\beta}(s)\Psi(s)\pi(s)-\frac{[\beta/(\beta+1)]^{\beta+1}} {a^{1/\beta}(s)A(s)}\right\}{\rm d}s \\ &=&\limsup\limits_{t\rightarrow+\infty}\int^{t}_{1}\left\{\frac{\lambda}{s}\left[1- \left(\frac{3}{5}2^{2/5}\frac{(s/4)^{2}}{(s/2)^{2}}+\frac{(2^{2/5}-1)s}{k}\right)\frac{4}{s^{2}}\right]-\frac{1}{4s}\right\}=+\infty, \end{eqnarray*} $

所以, 定理2.2的条件全部满足, 因此当$\lambda>1/4$时方程(3.3)是振动的.

注 3.2  由于方程(3.2)及(3.3)是具有非线性中立项的微分方程, 并且方程(3.2)中$\beta\neq\gamma$, 所以文献[1-3, 5-16]中的定理均不能用于方程(3.2)及(3.3).

参考文献
[1] Agarwal R P, Bohner M, Li W T. Nonoscillation and Oscillation:Theory for Functional Differential Equations. New York:Marcel Dekker, 2004.
[2] Hasanbulli M, Rogovchenko Yu V. Oscillation criteria for second order nonlinear neutral differential equations. Appl Math Comput, 2010, 215: 4392–4399.
[3] Li T, Agarwal R P, Bohner M. Some oscillation results for second-order neutral differential equations. J Indian Math Soc, 2012, 79: 97–106.
[4] Lin X, Tang X. Oscillation of solutions of neutral differential equations with a superlinear neutral term. Appl Math Lett, 2007, 20: 1016–1022. DOI:10.1016/j.aml.2006.11.006
[5] Han Z, Li T, Sun S, et al. Remarks on the paper. Appl Math Comput, 2009, 207: 388–396.
[6] Sun Y G, Meng F W. Note on the paper of Dzurina and Stavroulakis. Appl Math Comput, 2006, 174: 1634–1641.
[7] 黄记洲, 符策红. 广义Emden-Fowler方程的振动性. 应用数学学报, 2015, 38(6): 1126–1135.
Huang Jizhou, Fu Cehong. Oscillation criteria of generalized Emden-Fowler equations. Acta Mathematicae Applicatae Sinica, 2015, 38(6): 1126–1135.
[8] 曾云辉, 罗李平, 俞元洪. 中立型Emden-Fowler时滞微分方程的振动性. 数学物理学报, 2015, 35A(4): 803–814.
Zeng Yunhui, Luo liping, Yu Yuanhong. Oscillation for Emden-Fowler delay differential equations of neutral type. Acta Mathematica Scientia, 2015, 35A(4): 803–814. DOI:10.3969/j.issn.1003-3998.2015.04.016
[9] Li T, Rogovchenko Yu V, Zhang C. Oscillation of second-order neutral differential equations. Funkc Ekvac, 2013, 56: 111–120. DOI:10.1619/fesi.56.111
[10] Sun S, Li T, Han Z, et al. Oscillation theorems for second-order quasilinear neutral functional differential equations. Abstract and Applied Analysis, 2012, 2012: 1–17.
[11] Zhong J, Ouyang Z, Zou S. An oscillation theorem for a class of second-order forced neutral delay differential equations with mixed nonlinearities. Applied Mathematics Letters, 2011, 24(8): 1449–1454. DOI:10.1016/j.aml.2011.03.030
[12] Sun S, Li T, Han Z, et al. On oscillation of second-order nonlinear neutral functional differential equations. Bull Malays Math Sci Soc, 2013, 36(3): 541–554.
[13] Yang J S, Qin X W, Zhang X J. Oscillation criteria for certain second-order nonlinear neutral delay dynamic equations with damping on time scales. Mathematica Applicata, 2015, 28(2): 439–448.
[14] 杨甲山. 具非线性中立项的二阶变时滞微分方程的振荡性. 华东师范大学学报(自然科学版), 2016, 2016(4): 30–37.
Yang Jiashan. Oscillation of second-order variable delay differential equations with nonlinear neutral term. Journal of East China Normal University (Natural Science), 2016, 2016(4): 30–37. DOI:10.3969/j.issn.1000-5641.2016.04.004
[15] 杨甲山, 覃桂茳. 一类二阶微分方程新的Kamenev型振动准则. 浙江大学学报(理学版), 2017, 44(3): 274–280.
Yang Jiashan, Qin Guijiang. Kamenev-type oscillation criteria for certain second-order differential equations. Journal of Zhejiang University (Science Edition), 2017, 44(3): 274–280.
[16] 杨甲山. 具阻尼项的二阶Emden-Fowler型泛函差分方程的振动性. 华中师范大学学报(自然科学版), 2017, 51(6): 723–730.
Yang Jiashan. Oscillation criteria for second-order Emden-Fowler functional difference equations with damping. Journal of Central China Normal University(Natural Sciences), 2017, 51(6): 723–730.
[17] 李文娟, 汤获, 俞元洪. 中立型Emden-Fowler微分方程的振动性. 数学物理学报, 2017, 37A(6): 1062–1069.
Li Wenjuan, Tang Huo, Yu Yuanhong. Oscillation of the neutral Emden-Fowler differential equation. Acta Mathematica Scientia, 2017, 37A(6): 1062–1069. DOI:10.3969/j.issn.1003-3998.2017.06.006