数学物理学报  2018, Vol. 38 Issue (1): 46-53   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
尹枥
黄利国
广义椭圆积分的两个不等式
尹枥, 黄利国     
滨州学院理学院 山东滨州 256600
摘要:研究了函数$ \Delta _p (r) = \frac{{E_p - \left( {r'} \right)^p K_p }}{{r^p }} - \frac{{E'_p - r^p K'_p }}{{\left( {r'} \right)^p }} $的单调性和凸性并给出了该函数的两个不等式,其中$K_p$$E_p$分别是第一型和第二型广义椭圆积分.
关键词不等式    广义椭圆积分    超几何函数    单调性    凸性    
Two Inequalities Related to Generalized Elliptic Integrals
Yin Li, Huang Liguo     
Department of Mathematics, Binzhou University, Shandong Binzhou 256600
Abstract: In this paper, the authors mainly study monotonicity and convexity of the function Δp (r) where Kp and Ep denote the generalized elliptic integrals of the first and second kinds, respectively. Hence, we give two new inequalities.
Key words: Inequalities     Generalized elliptic integrals     Hypergeometric function     Monotonicity     Convexity    
1 引言

对于给定的复数 $a, b, c$ , 其中 $c\neq 0, -1, -2, \cdots$ , 高斯超几何分布函数定义如下

$ F(a, b;c;z)= _{2}F_1(a, b;c;z)=\sum\limits_{n\geqslant 0}\frac{(a, n)(b, n)}{(c, n)}\frac{z^n}{n!}, |z|<1. $

其中当 $a\neq 0$ 时, $(a, 0)=1$ , 对 $n\in \bf{N}$ , $(a, n)$ 称为移位阶乘或Appell符号, 其定义为 $(a, n)=a(a+1)\cdots(a+n-1).$ 关于高斯超几何分布函数更多的背景、性质和应用可参看文献[1-12], 值得注意的是,许多重要的特殊函数都可以通过超几何分布函数表示出来.例如:第一型和第二型的完全椭圆积分 $K(r)$ $E(r)$ (参见文献[13-14])分别可以表示为

$ K=K(r) = \int_0^{\pi /2} {\frac{1} {{\sqrt {1 - r^2 \sin ^2 t} }}}{\rm d}t =\frac{\pi } {2}F\Big(\frac{1} {2}, \frac{1} {2};1;r^2\Big ), ~~K' = K' (r) = K (\sqrt{1-r^2}) $

$ E = E(r) = \int_0^{\pi /2} {\sqrt {1 - r^2 \sin ^2 t} }{\rm d}t = \frac{\pi }{2}F \Big( { - \frac{1}{2}, \frac{1}{2};1;r^2 } \Big), ~~E' = E' (r) = E (\sqrt{1-r^2}). $

接下来, 简单介绍一下Takeuchi给出的广义椭圆积分[15]定义, Lindqvist[16]于1995年提出的针对参数 $p>1$ 时的广义三角函数和广义双曲函数, 当 $p=2$ 时, 这些函数即为通常的三角函数(参阅文献[17-18]).一维 $p$ -拉普拉斯问题[19]

$ -\Delta_p u=-\left(|u'|^{p-2}u'\right)' =\lambda|u|^{p-2}u, \, u(0)=u(1)=0, \ \ \ p>1 $

的特征函数 $\sin_p$ 称为函数 $F:(0, 1)\to \left(0, \frac{\pi_p}{2}\right)$ 的反函数, 其定义如下

$ F(x)={\rm arcsin}_p(x)=\int^x_0(1-t^p)^{-\frac{1}{p}}{\rm d}t, $

并且

$ \pi_p=2{\rm arcsin}_{p}(1)=\frac{2}{p}\int^1_0(1-s)^{-1/p}s^{1/p-1}{\rm d}s=\frac{2} {p}\, B\left(1-\frac{1}{p}, \frac{1}{p}\right)=\frac{2 \pi}{p\, \sin\big(\frac{\pi}{p}\big)}\, , $

其中 $B(\cdot, \cdot)$ 表示经典的贝塔函数.对任意 $p\in (1, \infty), $ $r\in [0, 1)$ , 第一型和第二型广义椭圆积分分别定义为

$ K_p (r) = \int_0^{\pi _p /2} {\left( {1- r^p \sin_{p} ^p t} \right)^{\left( {1/p} \right)- 1} } {\rm d}t, \ K'_p = K'_p (r) = K_p (r') $

$ E_p (r) = \int_0^{\pi _p /2} {\left( {1- r^p \sin_{p} ^p t} \right)^{1/p} }{\rm d}t, \ E'_p = E'_p (r) = E_p (r'), $

其中 $p>1, r\in(0, 1)$ 并且 $ r' = \left( {1 - r^p } \right)^{1/p}. $ 依据 $K_p(r)$ $E_p(r)$ 的定义, 它们的超几何函数表示为

$ \begin{equation}\label{eq:1.1} K_p (r) = \frac{{\pi _p }}{2}F\left( {\frac{1}{p}, 1 - \frac{1}{p};1;r^p } \right) \end{equation} $ (1.1)

$ \begin{equation}\label{eq:1.2} E_p (r) = \frac{{\pi _p }}{2}F\left( {\frac{1}{p}, - \frac{1}{p};1;r^p } \right). \end{equation} $ (1.2)

关于 $K_p(r)$ $E_p(r)$ 的这些公式和相关性质可参看文献[20-25].

本文主要思想受Alzer和Richards研究[14]的启发, 他们的主要结果如下.

性质1.1 函数

$ \Delta (r) = \frac{{E - \left( {1 - r^2 } \right)K}}{{r^2 }} - \frac{{E' - r^2 K'}}{{\left( {1 - r^2 } \right)}} $

是从 $(0, 1)$ 映射到 $(\pi/4-1, 1-\pi/4)$ 的严格单增的凸函数, 且对任意 $r\in(0, 1)$ , 有

$ \begin{eqnarray*} \frac{\pi }{4} - 1 + \alpha r < \Delta (r) < \frac{\pi }{4} - 1 + \beta r, \end{eqnarray*} $

其中 $\alpha=0, $ $\beta=2-\frac{\pi}{2}=0.42920\cdots.$

为了将性质1.1推广到广义椭圆积分, 首先, 给出以下定义

$ \Delta _p (r) = \frac{{E_p - \left( {r'} \right)^p K_p }}{{r^p }} - \frac{{E'_p - r^p K'_p }}{{\left( {r'} \right)^p }}. $

对此,我们有如下结论.

定理1.1 当 $p$ 满足条件

(ⅰ) $2 + \frac{1}{p} + \frac{1}{{p^2 }} \le \frac{6}{p} < 3 + \frac{1}{{p^2 }};$

(ⅱ) $\varepsilon(p)>0$ 时, 函数 $\Delta_p$ 为从 $(0, 1)$ 映射到 $ \Big( {\frac{{\big( {1 - \frac{1}{p}} \big)\pi _p }}{2} - 1, 1 - \frac{{\big( {1 - \frac{1}{p}} \big)\pi _p }}{2}} \Big) $ 的严格单调递增的凸函数, 其中

$ 20 - \frac{36}{p} - \frac{{1}}{{p^2 }} + \frac{6}{{p^3}} - \frac{1}{{p^4 }}. $

此外, 对任意 $r\in(0, 1)$ , 有

$ \begin{equation}\label{eq:1.3} {\frac{{\big( {1 - \frac{1}{p}} \big)\pi _p }}{2} - 1} + \alpha (r) < \Delta_p (r) < {\frac{{\big( {1 - \frac{1}{p}} \big)\pi _p }}{2} - 1} + \beta r, \end{equation} $ (1.3)

其中 $\alpha=0, $ $\beta= {2 - \big( {1 - \frac{1}{p}} \big)\pi _p }.$

定理1.2 对任意 $r, s\in(0, 1)$ , 当 $p$ 满足条件(ⅰ)和(ⅱ)时, 有

$ \frac{{\big( {1 - \frac{1}{p}} \big)\pi _p }}{2} - 1 < \Delta _p (rs) - \Delta _p( r) - \Delta _p( s) < 1 - \frac{{\big( {1 - \frac{1}{p}} \big)\pi _p }}{2}. $
2 主要引理及其证明

引理2.1 记

$ \begin{eqnarray*} H_{p, a} (r) = \frac{{\pi _p }}{{2r^p }}\left[{F\left( {a, -a;1;r^p } \right)-\left( {r'} \right)^p F\left( {a, 1-a;1;r^p } \right)} \right]. \end{eqnarray*} $

$p>1, $ $r\in(0, 1)$ 时, 有

$ \begin{eqnarray*} H_{p, a} (r) = \frac{{(1 - a)\pi _p }}{2}F\left( {a, 1 - a;2;r^p } \right). \end{eqnarray*} $

 由超几何函数的定义可得

$ \begin{eqnarray*} H_{p, a} (r) &=&\frac{{\pi _p }}{{2r^p }}\left[{\sum\limits_{n = 0}^\infty {\frac{{(a)_n (-a)_n }}{{\left( {n!} \right)^2 }}r^{pn} }-\left( {1-r^p } \right)\sum\limits_{n = 0}^\infty {\frac{{(a)_n (1 - a)_n }}{{\left( {n!} \right)^2 }}r^{pn} } } \right] \\ & =&\frac{{\pi _p }}{{2r^p }}\left[{\sum\limits_{n = 0}^\infty {\left( {\frac{{(a)_n (-a)_n }}{{\left( {n!} \right)^2 }}-\frac{{(a)_n (1-a)_n }}{{\left( {n!} \right)^2 }}} \right)r^{pn} } + \sum\limits_{n = 0}^\infty {\frac{{(a)_n (1 - a)_n }}{{\left( {n!} \right)^2 }}r^{p(n + 1)} } } \right] \\ & =&\frac{{\pi _p }}{2}\left[{\sum\limits_{n = 0}^\infty {\left( {\frac{{(a)_{n + 1} (-a)_{n + 1} }}{{\left( {(n + 1)!} \right)^2 }}-\frac{{(a)_{n + 1} (1-a)_{n + 1} }}{{\left( {(n + 1)!} \right)^2 }}} \right)r^{pn} } + \sum\limits_{n = 0}^\infty {\frac{{(a)_n (1 - a)_n }}{{\left( {n!} \right)^2 }}r^{pn} } } \right] \\ &=&\frac{{\pi _p }}{2}\left[{\sum\limits_{n = 0}^\infty {\frac{{(a)_n (1-a)_n }}{{\left( {(n + 1)!} \right)^2 }}\left( {(n + a)(-a)-(a + n)(1 - a + n) + (n + 1)^2 } \right)r^{pn} } } \right] \\ &=&\frac{{(1 - a)\pi _p }}{2}\sum\limits_{n = 0}^\infty {\frac{{(a)_n (1 - a)_n }}{{n!(2)_n }}r^{pn} } \\ & =&\frac{{(1 - a)\pi _p }}{2}F\left( {a, 1 - a;2;r^p } \right). \end{eqnarray*} $

证毕.

引理2.2 当 $p>1, $ $r\in(0, 1)$ 时, 有

$ \begin{equation}\label{eq:2.1} F\left( {2 + \frac{1}{p}, 3 - \frac{1}{p};4;1 - r^p } \right) = \frac{{F\big( {1 + \frac{1}{p}, 2 - \frac{1}{p};4;1 - r^p } \big)}}{{r^p }}. \end{equation} $ (2.1)

 在文献[14]中的恒等式

$ \begin{eqnarray*} (1 - z)F\left( {a + 1, b + 1;a + b + 1;z} \right) = F\left( {a, b;a + b + 1;z} \right) \end{eqnarray*} $

$a=1+\frac{1}{p}, b=2-\frac{1}{p}, z=1-r^p$ , 可得公式(2.1).

引理2.3 当 $p>1, $ $r\in(0, 1)$ 时, 有

$ \begin{eqnarray}\label{eq:2.2} && \left( {2 - \frac{1}{p}} \right)F\left( {1 + \frac{1}{p}, 3 - \frac{1}{p};4;1 - r^p } \right)\\ &=& 3F\left( {1 + \frac{1}{p}, 2 - \frac{1}{p};3;1 - r^p } \right) - \left( {1 + \frac{1}{p}} \right)F\left( {1 + \frac{1}{p}, 2 - \frac{1}{p};4;1 - r^p } \right). \end{eqnarray} $ (2.2)

 考虑文献[26, 方程26]

$ \begin{eqnarray*} (\sigma - \rho )F\left( {\alpha, \rho ;\sigma + 1;z} \right) = \sigma F\left( {\alpha, \rho ;\sigma ;z} \right) - \rho F\left( {\alpha, \rho + 1;\sigma + 1;z} \right). \end{eqnarray*} $

$ \sigma = 3, \alpha = 1 + \frac{1}{p}, \rho = 2 - \frac{1}{p}, z = 1 - r^p $ 可得(2.2)式成立.

引理2.4 以下两式恒成立

$ \begin{eqnarray*} H_{p, 1/p} (0) = \frac{{\big( {1 - \frac{1}{p}} \big)\pi _p }}{2}, H_{p, 1/p} (1) = 1. \end{eqnarray*} $

 显然

$ H_{p, 1/p} (0) = \frac{{\big( {1 - \frac{1}{p}} \big)\pi _p }}{2}F \left( {\frac{1}{p}, 1 - \frac{1}{p};2;0} \right) = \frac{{\big( {1 - \frac{1}{p}} \big)\pi _p }}{2}. $

利用恒等式(详见文献[27, 第153页])

$ F\left( {\alpha, \beta ;\gamma ;1} \right) = \frac{{\Gamma (\gamma )\Gamma (\gamma - \alpha - \beta )}}{{\Gamma \left( {\gamma - \alpha } \right)\Gamma \left( {\gamma - \beta } \right)}}, $

可得

$ \begin{eqnarray*} H_{p, 1/p} (1) &= &\frac{{\big( {1 - \frac{1}{p}} \big)\pi _p }}{2}F \left( {\frac{1}{p}, 1 - \frac{1}{p};2;1} \right) \\ & = &\frac{{\big( {1 - \frac{1}{p}} \big)\pi _p }}{2} \frac{{\Gamma (2)\Gamma (1)}}{{\Gamma \big( {2 - \frac{1}{p}} \big)\Gamma \big( {1 + \frac{1}{p}} \big)}} \\ &=& \frac{{\big( {1 - \frac{1}{p}} \big)\pi _p }}{2}\frac{1}{{\big( {1 - \frac{1}{p}} \big)\Gamma \big( {1 - \frac{1}{p}} \big) \frac{1}{p}\Gamma \big( {\frac{1}{p}} \big)}} \\ &=& 1. \end{eqnarray*} $

证毕.

3 定理1.1和定理1.2的证明

定理1.1的证明 由公式(1.1), (1.2)和引理2.1可得

$ \begin{eqnarray*} \Delta _p (r) &= &H_{p, 1/p} (r) - H_{p, 1/p} (r') \\ & = &\frac{{\big( {1 - \frac{1}{p}} \big)\pi _p }}{2}\left[{F\left( {\frac{1}{p}, 1-\frac{1}{p};2;r^p } \right)-F\left( {\frac{1}{p}, 1-\frac{1}{p};2;1 - r^p } \right)} \right]. \end{eqnarray*} $

$ \frac{\rm d}{{{\rm d}r}}F\left( {a, b;c;r} \right) = \frac{{ab}}{c}F\left( {a + 1, b + 1;c + 1;r} \right) $

容易得到

$ \Delta '_p (r) = \frac{{\big( {1 - \frac{1}{p}} \big)^2 \pi _p r^{p-1}}}{4}\left[{F\left( {1 + \frac{1}{p}, 2-\frac{1}{p};3;r^p } \right)-F\left( {1 + \frac{1}{p}, 2-\frac{1}{p};3;1 - r^p } \right)} \right] $

$ \begin{eqnarray*} &&\frac{4}{{\big( {1 - \frac{1}{p}} \big)^2 \pi _p r^{p - 2} }}\Delta ''_p (r)\\ & =&(p-1)\left\{ {\left[{F\left( {1 + \frac{1}{p}, 2-\frac{1}{p};3;r^p } \right)-F\left( {1 + \frac{1}{p}, 2-\frac{1}{p};3;1 - r^p } \right)} \right]} \right\} \\ && + \frac{{(p + 1)(2p - 1)r^p }}{{3p}}\left[{F\left( {2 + \frac{1}{p}, 3-\frac{1}{p};4;r^p } \right)-F\left( {2 + \frac{1}{p}, 3-\frac{1}{p};4;1 - r^p } \right)} \right]. \end{eqnarray*} $

再由引理2.2可得

$ \begin{eqnarray*} && \frac{4}{{\big( {1 - \frac{1}{p}} \big)^2 \pi _p r^{p - 2}}}\Delta ''_p (r) \\ &=& (p - 1)F\left( {1 + \frac{1}{p}, 2 - \frac{1}{p};3;r^p } \right) - (p - 1)F\left( {1 + \frac{1}{p}, 2 - \frac{1}{p};3;\left( {r'} \right)^p } \right) \\ && + \frac{{p\big( {1 + \frac{1}{p}} \big)\big( {2 - \frac{1}{p}} \big)}} {{\left( {3} \right)}}r^p F\left( {2 + \frac{1}{p}, 3 - \frac{1}{p};4;r^p } \right) - p\left( {2 - \frac{1}{p}} \right)F\left( {1 + \frac{1}{p}, 2 - \frac{1}{p};3;\left( {r'} \right)^p } \right) \\ && + \frac{{p\big( {2 - \frac{1}{p}} \big)^2 }}{{\big( {3 + \frac{1}{p} - \frac{1}{p}} \big)}}F\left( {1 + \frac{1}{p}, 3 - \frac{1}{p};4;\left( {r'} \right)^p } \right) \\ &=& (p - 1)F\left( {1 + \frac{1}{p}, 2 - \frac{1}{p};3;r^p } \right) + \frac{{p\big( {1 + \frac{1}{p}} \big) \big( {2 - \frac{1}{p}} \big)}}{{\left( {3} \right)}}r^p F\left( {2 + \frac{1}{p}, 3 - \frac{1}{p};4;r^p } \right) \\ && - p\left[{p\left( {2-\frac{1}{p}} \right)-(p-1)} \right] F\left( {1 + \frac{1}{p}, 2 - \frac{1}{p};3;\left( {r'} \right)^p } \right) \\ && + \frac{{p\big( {2 - \frac{1}{p}} \big)^2 }}{{ {3 } }}F\left( {1 + \frac{1}{p}, 3 - \frac{1}{p};4;\left( {r'} \right)^p } \right), \end{eqnarray*} $

再应用条件(ⅰ)和(ⅱ)及引理2.3, 得

$ \begin{eqnarray*} && \frac{4}{{\big( {1 - \frac{1}{p}} \big)^2 \pi _p r^{p - 2}}}\Delta ''_p (r) \\ &\ge& (p - 1) - pF\left( {1 + \frac{1}{p}, 2 - \frac{1}{p};3;\left( {r'} \right)^p } \right) + \frac{{p\big( {2 - \frac{1}{p}} \big)^2 }} {{\left( {3 } \right)}}F\left( {1 + \frac{1}{p}, 3 - \frac{1}{p};4; \left( {r'} \right)^p } \right) \\ & =& (p - 1)\left[{1 + \sum\limits_{n = 0}^\infty {\frac{{\big( {1 + \frac{1}{p}} \big)_n \big( {2-\frac{1}{p}} \big)}}{{\left( {3} \right)_{n}\left( {n + 3 } \right)}}\left( {n-\frac{{\frac{1}{p} + \frac{3}{p}-1 - \frac{1}{{p^2 }}}}{{1 - \frac{1}{p}}}} \right)\frac{{\left( {r'} \right)^{pn} }}{{n!}}} } \right] \\ & > &(p - 1)\left[{1 + \sum\limits_{n = 0}^1 {\frac{{\big( {1 + \frac{1}{p}} \big)_n \big( {2-\frac{1}{p}} \big)}} {{\left( {3 } \right)_{n}\left( {n + 3} \right)}}\left( {n- \frac{{\frac{1}{p} + \frac{3}{p}-1 -\frac{1}{{p^2 }}}}{{1 - \frac{1}{p}}}} \right)\frac{{\left( {r'} \right)^{pn} }}{{n!}}} } \right] \\ &=& (p - 1)\left[{\frac{{\varepsilon (p)}} {{12\big( {1-\frac{1}{p}} \big)}} + \frac{{\big( {1 + \frac{1}{p}} \big) \big( {2-\frac{1}{p}} \big)\big( {\frac{5}{p}-2 - \frac{1}{{p^2 }}} \big)r^p }}{{12\big( {1 - \frac{1}{p}} \big)}}} \right] \\ & > &0. \end{eqnarray*} $

$ \Delta ''_p (r) > 0$ , 可知 $\Delta '_p (r)$ $(0, 1)$ 上的严格单调递增函数.从而, 有 $\Delta '_p (r)> \Delta '_p (0).$ 利用洛必达法则, 得

$ \begin{eqnarray*} \Delta _p ^\prime (0) &=& \mathop {\lim }\limits_{r \to 0^ + } \frac{{\Delta _p (r) - \Delta _p (0)}}{{r - 0}} \\ &=& \mathop {\lim }\limits_{r \to 0^ + } \frac{{H_{p, 1/p} (r) - H_{p, 1/p} (0)}}{{r - 0}} - \frac{{H_{p, 1/p} (r') - H_{p, 1/p} (1)}}{{r - 0}} \\ &=& H'_{p, 1/p} (0) - \mathop {\lim }\limits_{x \to 1^ + } \frac{{H_{p, 1/p} (x) - 1}}{{\left( {1 - x^p } \right)^{1/p} }} \\ &= &\mathop {\lim }\limits_{x \to 1^ + } H'_{p, 1/p} (x)\frac{{\left( {1 - x^p } \right)^{1 - 1/p} }}{{x^{p - 1} }} \\ &= &0, \end{eqnarray*} $

其中

$ H'_{p, 1/p} (0) = \frac{{\big( {1 - \frac{1}{p}} \big)^2 \pi _p r^{p-1}}}{4}F\left( {1 + \frac{1}{p}, 2 - \frac{1}{p};3;r^p } \right)\left| {_{r = 0} } \right. = 0. $

从而 $\Delta_p (r)$ $(0, 1)$ 上的严格单调递增函数.

定义

$ M_p (r) = \frac{{\Delta _p (r) - \Delta _p (0)}}{{r - 0}}. $

$\Delta_p (r)$ $(0, 1)$ 上的严格凸函数可知 $M_p (r)$ $(0, 1)$ 上的严格单调递增函数, 从而有

$ M_p (0)<M_p (r)<M_p (1). $

由引理2.4可知 $M_p (0)=0$ ,

$ M_p (1) = \Delta _p (1) - \Delta _p (0) = 2H_{p, 1/p} (1) - 2H_{p, 1/p} (0) = 2 - \left( {1 - \frac{1}{p}} \right)\pi _p, $

从而公式(1.3)成立.

定理1.2的证明 记

$ \lambda _p (r, s) = \Delta _p (rs) - \Delta _p (r) - \Delta _p (s), $

经简单计算, 得

$ \frac{\partial }{{\partial r}}\lambda _p (r, s) = s\Delta '_p (rs) - \Delta _p ^\prime (r), $
$ \frac{{\partial ^2 }}{{\partial r\partial s}}\lambda _p (r, s) = \Delta '_p (rs) + rs\Delta _p ^{\prime \prime } (rs). $
$ \frac{\partial }{{\partial r}}\lambda _p (r, s) < \frac{\partial }{{\partial r}}\lambda _p (r, s)\left| {_{s = 1} } \right. = 0. $

由定理1.1的结论可知 $\frac{{\partial ^2 }}{{\partial r\partial s}}\lambda _p (r, s)>0$ .从而函数 $\frac{\partial }{{\partial r}}\lambda _p (r, s)$ 是关于变量 $s$ 的严格单调递增函数.由

$ \frac{\partial }{{\partial r}}\lambda _p (r, s) < \frac{\partial }{{\partial r}}\lambda _p (r, s)\left| {_{s = 1} } \right. = 0 $

$ r \mapsto \lambda _p (r, s) $ 是严格单调递减的函数, 从而

$ - \Delta _p (1) = \lambda _p (1, s) < \lambda _p (r, s) < \lambda _p (0, s) =-\Delta _p (s)< - \Delta _p (0). $

证毕.

参考文献
[1] Abramowitz M, Stegun I A. Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. Washington: US Government Printing Office, 1964.
[2] Andrews G E, Askey R, Roy R. Special Functions. Cambridge: Cambridge University Press, 1999.
[3] Wang M K, Chu Y M. Refinements of transformation inequalities for zero-balanced hypergeometric functions. Acta Math Sci, 2017, 37B(3): 607–622.
[4] Wang M K, Li Y M, Chu Y M. Inequalities and infinite product formula for Ramanujan generalized modular equation function. Ramanujan J, 2017, 43: 1–12. DOI:10.1007/s11139-016-9826-9
[5] Yang Z H, Chu Y M, Zhang X H. Sharp stolarsky mean bounds for the complete elliptic integral of the second kind. J Nonlinear Sci Appl, 2017, 10(3): 929–936. DOI:10.22436/jnsa
[6] Yang Z H, Chu Y M, Zhang W. Accurate approximations for the complete elliptic integral of the second kind. J Math Anal Appl, 2016, 438(2): 875–888. DOI:10.1016/j.jmaa.2016.02.035
[7] Yang Z H, Chu Y M, Wang M K. Monotonicity criterion for the quotient of power series with applications. J Math Anal Appl, 2015, 428(1): 587–604. DOI:10.1016/j.jmaa.2015.03.043
[8] Wang M K, Chu Y M. Asymptotical bounds for complete elliptic integrals of the second kind. J Math Anal Appl, 2013, 402(1): 119–126. DOI:10.1016/j.jmaa.2013.01.016
[9] 王淼坤, 褚玉明, 蒋月评, 闫丹丹. 零平衡超几何函数的一类二次变换不等式. 数学物理学报, 2014, 34A(4): 999–1007.
Wang M K, Chu Y M, Jiang Y P, Yan D D. A class of quadtrtic transformation inequalities for zero-balanced hypergeometric functions. Acta Math Sci, 2014, 34A(4): 999–1007.
[10] Ma X Y, Chu Y M, Wang F. Monotonicity and inequalities for the generalized distortion function. Acta Math Sci, 2013, 33B(6): 1759–1766.
[11] 王根娣, 张孝惠, 褚玉明, 裘松良. 完全椭圆积分和Hersch-Pfluger偏差函数. 数学物理学报, 2008, 28A(4): 731–734.
Wang G D, Zhang X H, Chu Y M, Qiu S L. Complete elliptic integrals and the Hersch-Pfluger distortion function. Acta Math Sci, 2008, 28A(4): 731–734.
[12] 张孝惠, 裘松良, 褚玉明, 王根娣. 广义Grötzsch环函数的几个精确不等式. 数学物理学报, 2008, 28A(1): 59–65.
Zhang X H, Qiu S L, Chu Y M, Wang G D. Some sharp inequalities for a generalized Grötzsch ring function. Acta Math Sci, 2008, 28A(1): 59–65.
[13] Alzer H, Qiu S L. Monotonicity theorems and inequalities for the generalized complete elliptic integrals. J Comput Appl Math, 2004, 172(2): 289–312. DOI:10.1016/j.cam.2004.02.009
[14] Alzer H, Richards K. A note on a function involving complete elliptic integrals:monotonicity, convexity, inequalities. Anal Math, 2015, 41(3): 133–139. DOI:10.1007/s10476-015-0201-7
[15] Heikkala V, Vamanamurthy M K, Vuorinen M. Generalized elliptic integrals. Comput Methods Funct Theory, 2009, 9(1): 75–109. DOI:10.1007/BF03321716
[16] Lindqvist P. Some remarkable sine and cosine functions. Ricerche Mat, 1995, 44(2): 269–290.
[17] Jiang W D, Wang M K, Chu Y M, Jiang Y P, Qi F. Convexity of the generalized sine function and the generalized hyperbolic sine function. J Approx Theory, 2013, 174: 1–9. DOI:10.1016/j.jat.2013.06.005
[18] Song Y Q, Chu Y M, Liu B Y, Wang M K. A note on generalized trigonometric and hyperbolic functions. J Math Inequal, 2014, 8(3): 635–542.
[19] Drábek P, Manásevich R. On the closed solution to some nonhomogeneous eigenvalue problems with p-Laplacian. Differential Integrals Equations, 1999, 12(6): 773–788.
[20] Takeuchi S. A new form of the generalized complete elliptic integrals. Kodai Math J, 2016, 39(1): 202–226. DOI:10.2996/kmj/1458651700
[21] Wang M K, Chu Y M, Song Y Q. Asymptotical formulas for Gaussian and generalized hypergeometric functions. Appl Math Comput, 2016, 276: 44–60.
[22] Wang M K, Chu Y M, Qiu S L. Sharp bounds for generalized elliptic integrals of the first kind. J Math Anal Appl, 2015, 429(2): 744–757. DOI:10.1016/j.jmaa.2015.04.035
[23] Zhang X H, Wang G D, Chu Y M. Remarks on generalized elliptic integrals. Proc Roy Soc Edinburgh Sect A, 2009, 139(2): 417–426. DOI:10.1017/S0308210507000327
[24] Wang G D, Zhang X H, Chu Y M. Inequalities for the generalized elliptic integrals and modular functions. J Math Anal Appl, 2007, 331(2): 1275–1283. DOI:10.1016/j.jmaa.2006.09.070
[25] Wang M K, Qiu S L, Chu Y M, Jiang Y P. Generalized Hersch-Pfluger distortion function and complete elliptic integrals. J Math Anal Appl, 2012, 385(1): 221–229. DOI:10.1016/j.jmaa.2011.06.039
[26] Prudnikov A P, Brychkov Y A, Marichev O I. Integrals and Series (Volume 3):More Sepcial Functions. New York: Gordon and Breach Science Publishers, 1990.
[27] Wang Z X, Guo D R. Special Functions. Teaneck: World Scientific Publishing Co, 1989.