近几年来, 时间模上动态方程的振荡性理论引起了国内外学术界的广泛兴趣和高度关注[1-27], 这个新理论是德国的Hilger Stefan博士在他的导师Aulbach Bernd指导下于1990年首次提出来的[1], 目的有两个:其一是为了统一连续分析和离散分析理论, 将微分方程和差分方程的很多研究统一到一种框架下进行; 其二是弥补了微分方程与差分方程"之间"的不足, 如扩充到了$q$ -差分方程, 这类方程在量子理论方面有非常重要的应用.动态方程的新理论在自动控制技术、生物种群动力学、物理学(特别是核物理)、神经网络和社会科学等诸多领域中均有非常重要的应用, 并能解决许多不同领域里微分方程和差分方程不能解决的实际问题.近年来, 时间模上的理论及时间模上的动态方程研究成果非常丰富[2-28].本文讨论时间模上如下一类具有阻尼项的二阶非线性中立型变时滞Emden-Fowler型动态方程
的振荡性, 这里$y(t)=x(t)+B(t)g(x(\tau(t))), \phi_{1}(u)=|u|^{\lambda-1}u, $$ \phi_{2}(u)=|u|^{\beta-1}u, \lambda>0, \beta>0$为实常数; ${\Bbb T}$为任意时间模.
由于我们感兴趣的是方程解的振荡性, 所以假设时间模${\Bbb T}$是无界的, 即$\sup{\Bbb T}=\infty$, 且${\Bbb T}$是实数域${\Bbb R}$上的非空闭子集.设$t_{0}\in{\Bbb T}$且$t_{0}>0$, 我们定义时间模区间$[t_{0}, \infty)_{{\Bbb T}}=[t_{0}, \infty)\cap{\Bbb T}$.方程(1.1)的解是指定义在时间模${\Bbb T}$上满足方程(1.1)的非平凡实值函数$x(t), t\in{\Bbb T}$.方程(1.1)的解$x(t)$称为振荡的, 如果$x(t)$既不最终为正, 也不最终为负.否则, 称为非振荡的.方程(1.1)称为振荡的, 如果它的所有解都是振荡的.我们仅关注方程(1.1)的不最终恒为零的解.为了叙述方便, 考虑如下假设:
(H$_{1}$) $\tau, \delta:{\Bbb T}\rightarrow{\Bbb T}$均为滞量函数, 并且$\tau(t)\leqslant t, \lim\limits_{t\rightarrow\infty}\tau(t)=\infty;$ $\delta(t)\leqslant t, \lim\limits_{t\rightarrow\infty}\delta(t)=\infty$, 且$\tau(\delta(t))=\delta(\tau(t))$;
(H$_{2}$) $\tau$是严格递增的, ${\tilde{\mathbb{T}}}=\tau({\Bbb T})\subseteq{\Bbb T}$是一时间模, $\tau\circ\sigma=\sigma\circ\tau$, 并且$\tau^{\Delta}(t)\geqslant\tau_{0}>0$ (这里$\tau_{0}$是常数), $\delta(t)\geqslant\tau(t)$;
(H$_{3}$) $P(t)\in C_{rd}({\Bbb T}, (0, \infty)), B(t)\in C_{rd}({\Bbb T}, {\Bbb R})$, 且$0\leqslant B(t)\leqslant b_{0}<\infty$ (这里$b_{0}$是常数);
(H$_{4}$) $A(t)\in C_{rd}({\Bbb T}, (0, \infty)), b(t)\in C_{rd}({\Bbb T}, [0, \infty))$, 并且$-b/A\in\Re^{+}$;
(H$_{5}$) $g\in C({\Bbb R}, {\Bbb R}), ug(u)>0 (u\neq0)$, 且存在常数$0<\eta\leqslant1$使得$g(u)/u\leqslant\eta (u\neq0)$;
(H$_{6}$) $F\in C({\Bbb R}, {\Bbb R}), uF(u)>0 (u\neq0)$, 且存在常数$L>0$使得$F(u)/u\geqslant L (u\neq0)$.
同样, 我们将分别在条件
和
成立的情况下建立方程(1.1)的振荡准则.
关于方程(1.1)的特殊情形, 已有一些研究成果.如Saker等[2]运用Riccati变换技术, 研究了时间模上具阻尼项的二阶非线性动态方程
的振荡性, 得到了该方程振荡的几个充分条件.
Erbe等[3]利用时间模上的微积分理论和Riccati变换技术研究了具阻尼项的二阶非线性动态方程
在条件
成立下得到了该方程的一些振荡准则, 推广并改进了已有的一些结果, 上式中
Chen等[4]研究了时间模上一类具阻尼项的二阶非线性动态方程
(这里$\gamma$是正奇数之比), 给出了方程振荡的一些充分条件.
张全信等[5-8]利用时间模上的有关理论及Riccati变换技术, 研究了时间模上具阻尼项的二阶半线性动态方程
的振荡性(这里$\gamma>0$是常数), 得到了方程(1.2)振荡的一些非常有意义的结果, 推广并改进了现有文献中的一些结论.但我们看到, 这些结果是在条件"$\delta(t)$严格递增且$\delta({\Bbb T})={\Bbb T}$"成立的情形下得到的.此条件限制性较强, 通常不容易满足.如取${\Bbb T}=\{2, 4, 6, \cdots\}, \delta(t)=t/2$, 则$\delta$是严格递增函数, 并且满足
但$\delta({\Bbb T})=\{1, 2, 3, \cdots\}\neq{\Bbb T}$.这样, 文献[5-8]中的条件$\delta({\Bbb T})={\Bbb T}$就不满足.因此, 文献[5-8]中的结果就不一定成立.
对于中立型动态方程, Sahiner[10], Wu等[11], Saker等[12-14]借助时间模上的有关理论和Riccati变换技术及不等式技巧, 研究了一类二阶非线性变时滞中立型动态方程
的振荡性, 得到了该方程振荡的一些充分条件, 推广并改进了一些已知的结果.但对中立项系数函数有限制条件$0\leqslant p(t)<1$ (其它文献也都有这样的限制条件, 如文献[18-24, 26]等)且$\gamma>0$是正奇数之比.
孙一冰等[9]借助时间模上的微积分理论、Riccati变换技术及不等式技巧, 研究了一类二阶半线性中立型时滞阻尼动态方程
的振荡性, 这里$z(t)=x(t)+r(t)x(\tau(t)), \gamma>0$, 得到了方程(1.3)的一些振荡准则, 部分地改进了文献[5-8]的结果.但对中立项系数函数同样有限制条件$0\leqslant r(t)<1$并且要求"$\tau=\delta, \delta$严格递增且$\tau\circ\sigma=\sigma\circ\tau$".这个条件也是一个限制性较强的条件.
此外, 我们注意到, 对于二阶Euler微分方程
来说, 由于$\int^{\infty}_{1}\frac{\ln t}{t^{2}}{\rm d}t<\infty$, 所以文献[3]的条件(C$_{3}$), 文献[6]的条件(4.16), 文献[8]的条件(4.14), 以及文献[9]的条件(3.25)均不满足, 因此这些文献中的定理均不能用于方程(1.4).
显然, 方程(1.1)更具有一般性.当$g(u)=u, F(u)=u$且$\lambda=\beta$时, 方程(1.1)就可简化成方程(1.3)的形式; 当$r(t)\equiv0$时, 方程(1.3)就变成了方程(1.2).因此, 研究方程(1.1)是非常有意义的.本文的目的是利用时间模上动态方程的基本理论和广义的Riccati变换, 结合一些分析技巧, 在较宽松的条件下研究方程(1.1)的振荡性, 改善对方程的这些条件限制(如$\delta({\Bbb T})={\Bbb T}, \tau=\delta, 0\leqslant r(t)<1$等), 得到了该方程的几个新的振荡准则, 这些准则不仅推广和改进了一些已知的结论, 使得文献[2-14]中的许多结果成为我们结果的特例, 而且在时间模上统一了具有阻尼项的二阶非线性中立型变时滞Emden-Fowler型微分方程和差分方程的振荡性质.
本文的整体结构是这样的:第2节, 给出了6个引理, 这些引理对于本文结果的证明起到重要的作用; 第3节, 给出本文的6个主要结果, 是分别在条件$(C_{1})$和$(C_{2})$成立的情况下建立的; 第4节, 给出2个具体例子来说明本文结果的应用.
以下给出几个引理, 其中引理2.1是众所周知的, 为文献[15]中的定理2.33(也是文献[5]中的引理3.1);引理2.2是文献[15]中的定理1.90;引理2.3是文献[18]中的一个引理(也可由数学分析的方法得到); 引理2.4是文献[19]中的引理2.2;引理2.5是文献[20]中的引理2.3.
引理2. 如果$g\in \Re^{+}$, 即$g(t)\in C_{rd}({\Bbb T}, {\Bbb R})$, 并且对于任意的$t\in[t_{0}, +\infty)_{{\Bbb T}}$, 满足$1+\mu(t)g(t)>0$.则初值问题$y^{\triangle}(t)=g(t)y(t), y(t_{0})=y_{0}\in {\Bbb R}$在$[t_{0}, +\infty)_{{\Bbb T}}$上有唯一的正解$e_{g}(t, t_{0})$, 这个"指数函数"有时也记为$e_{g}(\cdot, t_{0})$, 它满足半群性质$e_{g}(a, b)e_{g}(b, c)=e_{g}(a, c)$.
引理2.2 设$x(t)$是$\Delta$可微的且最终为正或最终为负, 则有
引理2.3 设$A>0, B>0, \lambda>0$为常数, 则对$x>0$有$Bx-Ax^{\frac{\lambda+1}{\lambda}}\leqslant\frac{\lambda^{\lambda}B^{\lambda+1}}{(\lambda+1)^{\lambda+1}A^{\lambda}}$.
引理2.4 若$\tau(t)$是严格递增的, ${\tilde{\mathbb{T}}}:=\tau({\Bbb T})\subseteq{\Bbb T}$是一时间模, $\tau(\sigma(t))=\sigma(\tau(t))$.设$x:{\tilde{\mathbb{T}}}\rightarrow{\Bbb R}$, 如果$\tau^{\Delta}(t)$和$x^{\Delta}(\tau(t))$存在($t\in{\Bbb T}^{k}$), 则$(x(\tau(t)))^{\Delta}$存在, 且
引理2.5 如果$0<\lambda\leqslant1, X, Y$为非负实数, 则$X^{\lambda}+Y^{\lambda}\geqslant(X+Y)^{\lambda}$.
引理2.6 设条件(H$_{1}$)-(H$_{6}$)和(C$_{1}$)成立, 若$x(t)$是方程(1.1)的一个最终正解, 则存在$t_{1}\in[t_{0}, +\infty)_{{\Bbb T}}$, 使得当$t\in[t_{1}, +\infty)_{{\Bbb T}}$时, 有
证 因为$x(t)$是方程(1.1)的一个最终正解, 所以$\exists t_{1}\in[t_{0}, +\infty)_{{\Bbb T}}$, 当$t\in[t_{1}, +\infty)_{{\Bbb T}}$时, 有$x(t)>0, x(\tau(t))>0, x(\delta(t))>0$.从而$y(t)>0$.由方程(1.1)得
注意到引理2.1, 就有
所以$\frac{A(t)\phi_{1}(y^{\Delta}(t))}{e_{_{-b/A}}(t, t_{0})}$严格递减且最终定号, 由此我们断定$y^{\Delta}(t)>0, t\in[t_{1}, +\infty)_{{\Bbb T}}$.
事实上, 若不然, 则存在$t_{2}\in[t_{1}, +\infty)_{{\Bbb T}}$, 使得$y^{\Delta}(t_{2})<0$, 于是$t\in[t_{2}, +\infty)_{{\Bbb T}}$时, 就有
这里$M=-\frac{A(t_{2})\phi_{1}(y^{\Delta}(t_{2}))}{e_{_{-b/A}}(t_{2}, t_{0})} =$$\frac{A(t_{2})|y^{\Delta}(t_{2})|^{\lambda-1}[-y^{\Delta}(t_{2})]}{e_{_{-b/A}}(t_{2}, t_{0})}>0$为常数.所以
即
因此
这与$y(t)>0$矛盾, 故$y^{\Delta}(t)>0, t\in[t_{1}, +\infty)_{{\Bbb T}}$, 进而$A(t)\phi_{1}(y^{\Delta}(t))>0$.
定理3.1 设条件(H$_{1}$)-(H$_{6}$)和(C$_{1}$)成立, 如果存在函数$\varphi\in C^{1}_{rd}([t_{0}, \infty)_{{\Bbb T}}, (0, \infty))$使得当$\lambda\leqslant\beta$时
当$\lambda>\beta$时
式中函数$\xi(t)=\min\{P(t), P(\tau(t))\}$, 常数$\varsigma=\left\{\begin{array}{ll} L, &0<\lambda\leqslant1, \\ 2^{1-\beta}L, &\lambda>1, \end{array} \right.$ $\alpha_{_{1}}=k^{\frac{\beta-\lambda}{\lambda}}\beta\tau_{_{0}}, $ $\alpha_{_{2}}=\frac{\beta\tau_{_{0}}}{k^{(\lambda-\beta)/\beta\lambda}}$ ($k>0$为某常数), 则方程(1.1)在$[t_{0}, +\infty)_{{\Bbb T}}$上是振荡的.
证 设方程(1.1)在$[t_{0}, +\infty)_{{\Bbb T}}$上有一个非振荡解$x(t)$, 不失一般性, 不妨设$x(t)>0, $ $x(\tau(t))>0, x(\delta(t))>0, t\in[t_{1}, +\infty)_{{\Bbb T}}, t_{1}\in[t_{0}, +\infty)_{{\Bbb T}}$ (当$x(t)$是最终负解时类似地可以证明), 于是$y(t)>0, y^{\Delta}(t)>0, t\in[t_{1}, +\infty)_{{\Bbb T}}$.
当$\lambda>1$时, 由(2.1)式就有
当$0<\lambda\leqslant1$时, 同样由(2.1)式得
所以
利用(2.3)式, 可得
且有
于是, 综合上两式可得
一方面, 如果$0<\beta\leqslant1$, 则由上式, 并分别注意到$\tau^{\Delta}(t)\geqslant\tau_{_{0}}>0, \xi(t)$的定义, 引理2.5, 以及$y(t)\leqslant x(t)+b_{0}\eta x(\tau(t))$和$\tau(\delta(t))=\delta(\tau(t)), \delta(t)\geqslant\tau(t)$, 可得
又由于$[A(t)\phi_{1}(y^{\Delta}(t))]^{\Delta}<0$, 并注意到$t\leqslant\sigma(t), \tau(t)\leqslant\tau(\sigma(t))$, 因此有
将其代入(3.4)式, 注意到$y^{\Delta}(t)>0$, 得
另一方面, 若$\beta>1$, 注意到不等式$X^{\beta}+Y^{\beta}\geqslant2^{1-\beta}(X+Y)^{\beta}$(这里$X, Y$为非负实数.此不等式可由函数$f(x)=x^{\beta}(\beta>1)$的凹凸性推得), 则(3.5)式应为
于是(3.5)和(3.6)式可合成一个式子
下面分$\lambda\leqslant\beta$和$\lambda>\beta$两种情形来证明.
情形(a) $\lambda\leqslant\beta$.
定义广义的Riccati变换
则$W(t)>0, t\in[t_{1}, +\infty)_{{\Bbb T}}$.
一方面, 若$0<\beta\leqslant1$, 则由(3.3)及(2.2)式, 得
于是由(3.8)式, 并利用时间模上2个函数积及商的微分运算法则, 我们可得
由于$A(t)(y^{\Delta}(t))^{\lambda}$是递减的, 因此$A(\tau(t))(y^{\Delta}(\tau(t)))^{\lambda}\geqslant A(\sigma(t))(y^{\Delta}(\sigma(t)))^{\lambda}$, 即
注意到$y(\tau(t))\leqslant y(\tau(\sigma(t)))$, 所以
由于当$t\in[t_{1}, +\infty)_{{\Bbb T}}$时$y(t)>0, y^{\Delta}(t)>0$, 所以存在常数$k>0$, 使得$y(\tau(\sigma(t)))\geqslant k$ $(t\in[t_{1}, +\infty)_{{\Bbb T}})$.于是上式可化简为
其中$\alpha=k^{(\beta-\lambda)/\lambda}\beta\tau_{_{0}}$为常数.
再定义广义的Riccati变换
则$V(t)>0, t\in[t_{1}, +\infty)_{{\Bbb T}}$.类似地, 同样可得
另一方面, 若$\beta>1$.由(3.3)式, 得$[(y(\tau(t)))^{\beta}]^{\Delta}\geqslant\beta(y(\tau(t)))^{\beta-1}y^{\Delta}(\tau(t))\tau^{\Delta}(t)$.用与$0<\beta\leqslant1$时同样的方法可推得, 此时(3.11)式及(3.14)式仍然成立.
于是, 综合(3.11)式和(3.14)式, 并分别注意到(3.7)式及$y(\tau(t))\leqslant y(\tau(\sigma(t)))$, 可得
应用引理2.3, 于是由(3.15)式, 我们可得
两边积分, 得
上式取上极限, 得与(3.1)式矛盾.
情形(b) $\lambda>\beta$.
定义函数$W(t)$如(3.8)式, 则无论$\beta>1$还是$\beta\leqslant1$, (3.9)式都是成立的, 于是由(3.9)式, 得
利用$A(t)(y^{\Delta}(t))^{\lambda}$的单调减少性, 对$t\in[t_{1}, +\infty)_{{\Bbb T}}$, 有
于是
其中$\alpha=\frac{\beta\tau_{0}}{k^{(\lambda-\beta)/\beta\lambda}}$为常数.
我们再定义函数$V(t)$如(3.12)式, 则无论$\beta>1$还是$0<\beta\leqslant1$, (3.13)式都是成立的, 于是由(3.13)式, 按同样类似的方法, 得
综合(3.17)和(3.18)两式, 并分别注意到(3.7)式及$y(\tau(t))\leqslant y(\tau(\sigma(t)))$, 利用与情形(a)同样类似的方法, 得
上式取上极限, 得与(3.2)式矛盾.
注3.1 选取不同的函数$\varphi$ (如$\varphi(t)\equiv1, \varphi(t)=t$等), 就能得到关于方程(1.1)的不同的具体振荡准则.
注3.2 由定理3.1的条件(3.1)和(3.2)式可以看出, 当$\lambda>\beta$时和$\lambda<\beta$时方程(1.1)的振荡准则是不一样的.当$\lambda=\beta$时, 若取$g(u)=u, F(u)=u$, 则可得方程(1.3)的振荡准则, 但本文没有条件"$\tau=\delta$及$0\leqslant r(t)<1$"的限制; 当$\lambda=\beta$时, 若取$B(t)\equiv0$ (即$b_{0}=0, F(u)=u$), 则可得方程(1.2)的振荡准则, 这就是文献[5, 8]中的定理4.1, 但本文没有条件"$\delta({\Bbb T})={\Bbb T}$"的限制.其它相关结果可参看文献[2-4, 10-14, 18-19, 21, 23, 26]及其参考文献.
定理3.2 设(H$_{1}$)-(H$_{6}$)和(C$_{1}$)成立, 如果存在函数$\varphi\in C^{1}_{rd}([t_{0}, \infty)_{{\Bbb T}}, (0, \infty))$及常数$\omega\geqslant1$, 使得当$\lambda\leqslant\beta$时
其中常数$t_{1}\geqslant t_{0}$, 函数$\xi(t)$及常数$\varsigma, \alpha_{1}, \alpha_{2}$的定义如定理3.1, 则方程(1.1)在$[t_{0}, +\infty)_{{\Bbb T}}$上是振荡的.
证 设方程(1.1)在$[t_{0}, +\infty)_{{\Bbb T}}$上有一个非振荡解$x(t)$, 不失一般性, 不妨设$x(t)>0, $ $x(\tau(t))>0, x(\delta(t))>0, t\in[t_{1}, +\infty)_{{\Bbb T}}, t_{1}\in[t_{0}, +\infty)_{{\Bbb T}}$ (当$x(t)$是最终负解时类似地可以证明), 从而$y(t)>0$.
情形(a) $\lambda\leqslant\beta$.同定理3.1的证明, 可得(3.15)式.将(3.15)式中的$t$改成$s$, 两边再同乘以$(t-s)^{\omega}$并积分, 由时间模上的分部积分公式, 并注意到$[(t-s)^{\omega}]^{\Delta_{s}}\leqslant0$, 得
利用引理2.3, 于是由上式可得
由上式进一步可得
上式取上极限, 即得与(3.21)式矛盾.
情形(b) $\lambda>\beta$.同定理3.1的证明, 可得(3.19)式, 按照与情形(a)同样类似的方法, 可得到一个与(3.22)矛盾的结果.
注3.3 定理3.2将二阶微分方程的Kamenev型振荡准则推广到一类非常广泛的二阶Emden-Fowler型阻尼动态方程(1.1)上.当$\lambda=\beta$时, 若取$g(u)=u, F(u)=u$, 则可得方程(1.3)的振荡准则, 但本文没有条件"$\tau=\delta$且$0\leqslant r(t)<1$"的限制; 当$\lambda=\beta$时, 若取$B(t)\equiv0$(此时$b_{0}=0, F(u)=u$), 则可得方程(1.2)的振荡准则, 这就是文献[5]中的定理4.2, 但本文没有条件"$\delta({\Bbb T})={\Bbb T}$"的限制.
定理3.3 设(H$_{1}$)-(H$_{6}$)和(C$_{1}$)成立, 如果存在函数$\varphi\in C^{1}_{rd}([t_{0}, \infty)_{{\Bbb T}}, (0, \infty))$及常数$\omega\geqslant1$, 使得当$\lambda\leqslant\beta$时
其中常数$t_{1}\geqslant t_{0}$, 函数$\xi(t)$及常数$\varsigma, \alpha_{1}, \alpha_{2}$的定义如定理3.1,
则方程(1.1)在$[t_{0}, +\infty)_{{\Bbb T}}$上是振荡的.
证 设方程(1.1)在$[t_{0}, +\infty)_{{\Bbb T}}$上有一个非振荡解$x(t)$, 不失一般性, 不妨设$x(t)>0, x(\tau(t))>0, x(\delta(t))>0, t\in[t_{1}, +\infty)_{{\Bbb T}}, t_{1}\in[t_{0}, +\infty)_{{\Bbb T}}$ (当$x(t)$是最终负解时类似地可以证明), 从而$y(t)>0$.
由文献[22]中定理2.9的证明, 有
这里$t\geqslant\sigma(s), \omega\geqslant1$.
情形(a) 当$\lambda\leqslant\beta$时.同定理3.1的证明, 可得(3.15)式.将(3.15)式中的$t$改成$s$, 两边再同乘以$(t-s)^{\omega}$并积分, 由时间模上的分部积分公式, 并注意到(3.25)式, 可得
将引理2.3应用于上式, 可得
上式取$t\rightarrow\infty$的上极限, 就得到与(3.23)式矛盾.
情形(b) $\lambda>\beta$.同定理3.1的证明, 可得(3.19)式, 按照与情形(a)同样类似的方法, 可得到一个与(3.24)式矛盾的结果.定理证毕.
定理3.4 设条件(H$_{1}$)-(H$_{6}$)和(C$_{2}$)成立, 并且存在函数$\varphi\in C^{1}_{rd}([t_{0}, \infty)_{{\Bbb T}}, (0, \infty))$使得当$\lambda\leqslant\beta$时(3.1)式成立, 当$\lambda>\beta$时(3.2)式成立.如果
其中常数$t_{1}\geqslant t_{0}$, 函数$\theta(t)=\int^{\infty}_{t}A^{-1/\lambda}(s)\Delta s$,
($k>0$为某常数), 则方程(1.1)在$[t_{0}, +\infty)_{{\Bbb T}}$上是振荡的.
证 设方程(1.1)在$[t_{0}, +\infty)_{{\Bbb T}}$上有一个非振荡解$x(t)$, 不失一般性, 不妨设$x(t)>0, $ $x(\tau(t))>0, x(\delta(t))>0, t\in[t_{1}, +\infty)_{{\Bbb T}}, t_{1}\in[t_{0}, +\infty)_{{\Bbb T}}$ (当$x(t)$是最终负解时类似地可以证明), 于是, 由引理2.6的证明过程(并注意到(2.3)式)知, 当$t\in[t_{1}, +\infty)_{{\Bbb T}}$时$y(t)>0, $ $[A(t)\phi_{1}(y^{\Delta}(t))]^{\Delta}<0$且$y^{\Delta}(t)$或者最终为正或者最终为负.因此我们只需要考虑下列两种情形:
(ⅰ) $y^{\Delta}(t)>0, t\in[t_{1}, +\infty)_{{\Bbb T}}$;
(ⅱ) $y^{\Delta}(t)<0, t\in[t_{1}, +\infty)_{{\Bbb T}}$.
情形(ⅰ) $y^{\Delta}(t)>0, t\in[t_{1}, +\infty)_{{\Bbb T}}$.此时引理2.6成立, 于是同定理3.1的证明, 知方程(1.1)在$[t_{0}, +\infty)_{{\Bbb T}}$上是振荡的.
情形(ⅱ) $y^{\Delta}(t)<0(t\in[t_{1}, +\infty)_{{\Bbb T}})$.令
则$v(t)<0, t\in[t_{1}, +\infty)_{{\Bbb T}}$.由于$A(t)(-y^{\Delta}(t))^{\lambda-1}y^{\Delta}(t)$是单调减少的, 所以当$s\in[t, +\infty)_{{\Bbb T}}$时, 有
即$y^{\Delta}(s)\leqslant\frac{A^{1/\lambda}(\tau(t))y^{\Delta}(\tau(t))}{A^{1/\lambda}(s)}$, 进一步可得$y(u)\leqslant y(t)+A^{1/\lambda}(\tau(t))y^{\Delta}(\tau(t))\int^{u}_{t}A^{-1/\lambda}(s)\Delta s$, 令$u\rightarrow\infty$, 则有$y(t)+A^{1/\lambda}(\tau(t))y^{\Delta}(\tau(t))\theta(t)\geqslant0$, 从而$-1\leqslant\frac{A^{1/\lambda}(\tau(t))y^{\Delta}(\tau(t))}{y(t)}\theta(t)\leqslant0, $于是, 利用(3.27)式, 就有
另一方面, 由于$y^{\Delta}(t)<0$, 于是由(2.1)式, 有
现对(3.27)式求$\Delta$-导数, 注意到上式及$y^{\Delta}(t)<0$, 当$0<\lambda\leqslant1$时, 得
与前面一样, 当$\lambda>1$时(3.29)式也是成立的.再令
类似地, 同样有$w(t)\leqslant0, t\in[t_{1}, +\infty)_{{\Bbb T}}$, 并且
由于(3.4)式仍然成立, 类似于(3.7)式, 并注意到$y^{\Delta}(t)<0$, 可得
于是, 综合(3.32)和(3.29)式, 并注意到(3.33)式, 可得
当$\lambda>\beta$时, 由$y(t)>0, y^{\Delta}(t)<0(t\in[t_{1}, +\infty)_{{\Bbb T}})$知, $y(t)\leqslant y(t_{1})$, 即$y^{\beta-\lambda}(t)\geqslant y^{\beta-\lambda}(t_{1})=k$.
当$\lambda=\beta$时, $y^{\beta-\lambda}(t)=1$.
当$\lambda<\beta$时, 再次利用$A(t)(-y^{\Delta}(t))^{\lambda-1}y^{\Delta}(t)$的单调减少性, 得当$s\in[t_{1}, +\infty)_{{\Bbb T}}$时, 有
其中$M=-A(t_{1})(-y^{\Delta}(t_{1}))^{\lambda-1}y^{\Delta}(t_{1})>0$为常数, 于是$A(s)(-y^{\Delta}(s))^{\lambda}\geqslant M$即$y^{\Delta}(s)\leqslant-M^{1/\lambda}A^{-1/\lambda}$, 进一步就有$y(u)\leqslant y(t)-M^{1/\lambda}\int^{u}_{t}A^{-1/\lambda}(s)\Delta s$, 即
在上式中令$u\rightarrow\infty$, 得$y(t)\geqslant M^{1/\lambda}\int^{\infty}_{t}A^{-1/\lambda}(s)\Delta s=M^{1/\lambda}\theta(t)$, 即$y^{\beta-\lambda}(t)\geqslant k\theta^{\beta-\lambda}(t)$, 这里$k=M^{(\beta-\lambda)/\lambda}>0$是常数.
综合上述3种情形及函数$\pi(t)$的定义, 根据(3.34)式, 有
上式两边同乘$\theta^{\lambda}(\sigma(t))$后再积分, 由分部积分公式, 并注意到
即$[\theta^{\lambda}(t)]^{\Delta}\geqslant-\overline{\theta}(t)$以及引理2.3, 得
将(3.28)和(3.31)式用于上式, 得
这与(3.26)式矛盾.
注3.4 从条件(3.26)的结构来看, 本文定理3.4的条件(3.26)比文献[5]中定理4.3的条件(4.14)式及文献[8]中定理3.5的条件(3.25)更为合理, 而且也更容易验证.
运用与定理3.4相同的证明思路和方法, 并结合定理3.2和定理3.3, 容易得到下面结果.
定理3.5 设条件(H$_{1}$)-(H$_{6}$), (C$_{2}$)及(3.26)式成立, 若存在函数$\varphi\in C^{1}_{rd}([t_{0}, \infty)_{{\Bbb T}}, (0, \infty))$及常数$\omega\geqslant1$, 使得当$\lambda\leqslant\beta$时(3.21)式成立, 当$\lambda>\beta$时(3.22)式成立, 则方程(1.1)在$[t_{0}, +\infty)_{{\Bbb T}}$上是振荡的.
定理3.6 设条件(H$_{1}$)-(H$_{6}$), (C$_{2}$)及(3.26)式成立, 若存在函数$\varphi\in C^{1}_{rd}([t_{0}, \infty)_{{\Bbb T}}, (0, \infty))$及常数$\omega\geqslant1$, 使得当$\lambda\leqslant\beta$时(3.23)式成立, 当$\lambda>\beta$时(3.24)式成立, 则方程(1.1)在$[t_{0}, +\infty)_{{\Bbb T}}$上是振荡的.
注3.5 本文结果给出了时间模上一类非常广泛的具有阻尼项的二阶非线性中立型变时滞Emden-Fowler型泛函动态方程(1.1)振荡的几个充分条件, 推广并改进了现有文献中的结果, 并使得现有文献中的一些结果成为我们结果的特例.这些结果即使当${\Bbb T}={\Bbb R}$和${\Bbb T}={\Bbb N}$时也是新的, 并且在时间模上统一了相应的时滞微分方程和时滞差分方程振荡的有关结论.
例1 考虑二阶微分方程
其中常数$q_{0}>0$.显然, 这是著名的二阶Euler微分方程.令$A(t)=t^{2}, b(t)=0, B(t)=0, $ $P(t)=q_{0}, \tau(t)=\delta(t)=t, F(u)=u, \lambda=\beta=1$, 则$\varsigma=1, \tau_{0}=1, b_{0}=0$.显然满足条件(H$_{1}$)-(H$_{6}$)及(C$_{2}$).由于${\Bbb T}={\Bbb R}$, 因此
取$\varphi(t)=t$, 并记(3.1)式左边为$L_{1}$, 记(3.26)式左边为$L_{2}$, 则
并且
所以当$q_{0}>\frac{1}{4}$时, 条件(3.1)和(3.26)都满足, 即定理3.4的条件全部满足, 因此由定理3.4知, 当$q_{0}>\frac{1}{4}$时方程$(E_{1})$是振荡的.显然, 这与众所周知的结果是一致的.
注4.1 我们注意到, 若将文献[5]或[7]的定理4.3以及文献[9]的定理3.5用于方程$(E_{1})$, 只能得到"方程$(E_{1})$的每一个解或者振荡或者收敛于零", 不能判定方程的振荡性.另外, 由于$\int^{\infty}_{1}\frac{\ln t}{t^{2}}{\rm d}t<\infty$, 文献[3, 6, 8]中有关定理的条件不满足, 因而不能用于方程$(E_{1})$.其它文献如[2, 4, 10-14, 18-24, 26]中的定理也不能用于方程$(E_{1})$.
例2 考虑时间模${\Bbb T}$上具阻尼项的二阶变时滞泛函动态方程
这里$y(t)=x(t)+(9-\cos t)g(x(\frac{t}{3}))$.这是方程(1.1)中$\lambda=\frac{4}{3}, \beta=\frac{5}{2}, A(t)=t^{\frac{8}{9}}, $ $B(t)=9-\cos t, b(t)=\frac{1}{t^{2}}, $$P(t)=\frac{1}{t}, \tau(t)=\delta(t)=\frac{t}{3}$的情形.若取$g(u)=\frac{u}{\sqrt{1+\sin^{4}(u+5)}}, $ $f(u)=u[3^{\frac{5}{2}}+\ln^{\frac{5}{2}}(1+u^{2})]$, 并取时间模${\Bbb T}=3^{{\Bbb Z}}$, 则此时动态方程(4.1)即为二阶时滞3 -差分方程.由于当$u\neq0$时, 有
当$t\geqslant3$时, $1-\mu(t)\frac{b(t)}{A(t)}=1-t\cdot\frac{t^{-2}}{t^{8/9}}=1-\frac{1}{t^{17/9}}>0$, 即$-b/A\in\Re^{+}$.进一步, 由文献[25]中的引理2得, 当$t\geqslant3$时, 有
从而
所以条件(H$_{1}$)-(H$_{6}$)及(C$_{1}$)均满足.为了简单并考虑到$\lambda<\beta$, 现在定理3.1中取$\varphi(t)=1$, 则
同样, 记(3.1)式左边为$L_{1}$, 则
所以(3.1)式成立, 因此定理3.1的条件均满足, 于是由定理3.1知, 此时方程(4.1)是振荡的.
注4.2 由于方程(4.1)中的$\lambda\neq\beta$且中立项的系数函数$B(t)>1$, 因此最近文献(如[2-14, 18-24, 26-27]等)中的结果都不能判定方程(4.1)的振荡性