数学物理学报  2017, Vol. 37 Issue (4): 647-662   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
唐素芳
上半空间积分方程组的Liouville型定理
唐素芳     
西安财经学院统计学院 西安 710100
摘要:该文考虑上半空间一类积分方程组的Liouville型定理.在某些自然结构假设下,利用积分形式的移动球面法和Hardy-Littlewood-Sobolev(HLS)不等式,证明积分方程组正解的不存在性.
关键词积分方程组    Liouville型定理    HLS不等式    移动球面法    
Liouville Type Theorem for an Integral System on a Half Space
Tang Sufang     
School of Statistics, Xi'an University of Finance and Economics, Xi'an 710100
Abstract: This paper considers Liouville type theorem for a system of integral equations on the upper half Euclidean space. Under the natural structure conditions, we prove the nonexistence of positive solutions to the system basing on the method of moving sphere in integral form and the Hardy-Littlewood-Sobolev (HLS) inequality.
Key words: Integral system     Liouville theorem     HLS inequality     Moving spheres method    
1 引言

${\Bbb R}_+^n=\{x=(x_1, x_2, \ldots, x_n) \in {\Bbb R}^n \mid x_n>0\}$是上半欧氏空间.该文考虑${\Bbb R}_+^n$上如下积分方程组

$ \begin{eqnarray}\label{MG-sys} \left\{\begin{array}{ll} u(x)=\int_{{\Bbb R}_+^n}\Big(\frac{1}{|x-y|^{n-\alpha}}-\frac{1}{|\bar{x}-y|^{n-\alpha}}\Big)f_1(u(y))g_1(v(y)){\rm d}y, \\ v(x)=\int_{{\Bbb R}_+^n}\Big(\frac{1}{|x-y|^{n-\alpha}}-\frac{1}{|\bar{x}-y|^{n-\alpha}}\Big)f_2(u(y))g_2(v(y)){\rm d}y, \end{array}\right. \end{eqnarray} $ (1.1)

其中$\bar{x}=(x_1, \cdots, x_{n-1}, -x_n)$是点$x$关于超平面$x_n=0$的对称点.若$n\geq 4$, 则$\alpha\in (0, n)$; 若$n=3$, 则$\alpha\in (0, 1)\cup (1, n)$.并且, 假设$f_i, g_i (i=1, 2):\, [0, \infty)\to [0, \infty)$满足如下条件:

(ⅰ) $f_i(t), g_i(s)$$(0, \infty)$上非减;

(ⅱ) $F_i(t)=\frac{f_i(t)}{t^{p_i}}, G_i(s)=\frac{g_i(s)}{s^{q_i}}$$(0, \infty)$上非增, 且$0<\alpha<n, $ $p_i + q_i=\frac{n+\alpha}{n-\alpha}.$并且, $F_i$$ G_i$都是局部有界的.

假设$\alpha$是偶数, 容易验证方程组(1.1) 正的光滑解满足如下的Navier边值问题

$ \begin{eqnarray}\label{Diff} \left\{\begin{array}{ll} (-\Delta)^\frac\alpha2 u=f_1(u)g_1(v), &\quad\mbox{在}~{\Bbb R}_+^n~\mbox{中, }\\ (-\Delta)^\frac\alpha2 v=f_2(u)g_2(v), &\quad\mbox{在}~{\Bbb R}_+^n~\mbox{中, }\\ (-\Delta)^k u=0, &\quad\mbox{在}~\partial{\Bbb R}_+^n~\mbox{上, }\\ (-\Delta)^k v=0, &\quad\mbox{在}~\partial{\Bbb R}_+^n~\mbox{上, } \end{array}\right. \end{eqnarray} $ (1.2)

其中$k=0, 1, 2, \cdots, \frac{\alpha}{2}-1$.

Liouville型定理, 即非平凡解的不存在性定理, 在诸多领域中发挥着重要的作用, 例如先验估计的证明、全空间上的椭圆问题和半空间上的Neumann问题的非负解的研究.可参见文献[1-8]及其中的文献.

特别地, 当$f_i(u)=u^{p_i}$, $g_i(v)=v^{q_i}(i=1, 2), $ $\frac{n}{n-\alpha} < p_i+q_i\leq \frac{n+\alpha}{n-\alpha}$时, 文献[9]利用Kelvin变换和移动球面法, 对方程组(1.1) 的正解建立了Liouville型定理.对于单个方程, Cao和Dai[1]利用Kelvin变换和移动平面法证明了积分方程

$ \begin{eqnarray*} u(x)=\int_{{\Bbb R}_+^n}\Big(\frac{1}{|x-y|^{n-2m}}-\frac{1}{|\bar{x}-y|^{n-2m}}\Big)u^{p}(y){\rm d}y \end{eqnarray*} $

的Liouville型定理.这个积分方程与带有Navier边值条件的多调和方程

$ \left\{ \begin{array}{*{35}{l}} {{(-\Delta )}^{m}}u={{u}^{p}}, & \quad \rm{在}~\mathbb{R}_{+}^{\mathit{n}}~\rm{中, } \\ u=(-\Delta )u=\cdots ={{(-\Delta )}^{\frac{\alpha }{2}-1}}u=0, & \quad \rm{在}~\partial \mathbb{R}_{+}^{\mathit{n}}~\rm{上, } \\ \end{array} \right. $ (1.3)

密切相关, 其中$0 < 2m < n$, $1 < p\le\frac{n+2m}{n-2m}$, 这里$m$是一个整数.

Fang和Chen[10]考虑了如下单个积分方程

$ \begin{eqnarray}\label{Fang-Chen} u(x) = \int_{{\Bbb R}^n_+} G(x, y)u^p(y){\rm d}y, ~~1<p \leqslant \frac{n+2m}{n-2m}, \end{eqnarray} $ (1.4)

其中$G(x, y)$${\Bbb R}^n_+$上的Green函数.在局部可积的条件下, Fang和Chen利用积分形式的移动平面法证明了积分方程(1.4)正解不存在.并且, Fang和Chen还证明了积分方程(1.4)与如下带有Dirichlet边值条件的多调和方程

$ \begin{eqnarray}\label{Reichel-Weth} \left\{\begin{array}{ll} (-\Delta)^m u=u^p, \quad&\mbox{在}~{\Bbb R}^n_+ ~\mbox{中}, \\[2mm] u=\frac{\partial}{\partial x_n}u=\cdots=\frac{\partial^{m-1}}{\partial^{m-1}x_n}u=0, \quad&\mbox{在}~\partial{\Bbb R}^n_+ ~\mbox{上} \end{array}\right. \end{eqnarray} $ (1.5)

等价, 其中, 若$2m\ge n$, 则$p>1$; 若$n>2m>0$, 则$1<p\le\frac{n+2m}{n-2m}$. Reichel和Weth[8]利用Kelvin变换, 对Dirichlet问题(1.5)经典的非负有界解证明了Liouville型定理.特别地, 对于$m=1$的情况, Gidas和Spruck[4]对于相应的Dirichlet问题证明了Liouville型定理; Li和Zhu[7]分别在临界指数和次临界指数的条件下考虑了(1.5) 正解的不存在性.

注意到Dou和Li[11]在上半空间中建立了如下方程组

$ \begin{equation}\label{Dou-Li} \left\{\begin{array}{ll} u(x)=\int_{{\Bbb R}^{n-1}} \frac{1}{|x-y|^{n-\alpha}} {f(v(y))}{\rm d}y, &\quad x\in{\Bbb R}_+^{n}, \\[3mm] v(y)=\int_{{\Bbb R}^{n}_+} \frac{1}{|x-y|^{n-\alpha}} {g(u(x))} {\rm d}x, &\quad y\in\partial{\Bbb R}^{n}_+ \end{array}\right. \end{equation} $ (1.6)

的Liouville型定理, 其中$1<\alpha<n$, 且$f, g$满足类似于(ⅰ)和(ⅱ)的某些自然结构条件.特别地, 当$f(v)=v^{\frac{n+\alpha}{n-\alpha}}$$g(u)=u^{\frac{n+\alpha-2}{n-\alpha}}$时, Dou和Zhu[12]表明方程组(1.6) 恰好是上半空间相应于HLS不等式的Euler-Lagrange方程.并且, 利用积分形式的移动球面法及Li-Zhu引理[7], Dou和Zhu对方程组(1.6) 的正解进行了分类.

在全空间${\Bbb R}^{n}$的情形下, 存在类似于方程组(1.1) 的积分方程组

$ \begin{equation}\label{Dou-Qu1} \left\{\begin{array}{ll} u(x)=\int_{{\Bbb R}^n} \frac{1}{|x-y|^{n-\alpha}} u^{p_1}(y)v^{q_1}(y){\rm d}y, \\[4mm] v(x)=\int_{{\Bbb R}^n}\frac{1}{|x-y|^{n-\alpha}} u^{p_2}(y)v^{q_2}(y){\rm d}y, \end{array}\right. \end{equation} $ (1.7)

其中指数满足: $\frac{n}{n-\alpha} < p_i+q_i\leq \frac{n+\alpha}{n-\alpha}\, (i=1, 2).$ Dou, Qu[13]和Dou[14]分别利用积分形式的移动平面法和积分形式的移动球面法对方程组(1.7) 给出正解的分类.

$p_1=q_2=0, \, q_1=q, \, p_2=p$的情形下, 积分方程组(1.7) 简化为

$ \begin{equation}\label{whole-space} \left\{\begin{array}{ll} u(x)=\int_{{\Bbb R}^{n}} \frac{1}{|x-y|^{n-\alpha}}{v^{q}(y)}{\rm d}y, &\quad x\in{\Bbb R}^{n}, \\[4mm] v(y)=\int_{{\Bbb R}^{n}} \frac{1}{|x-y|^{n-\alpha}} {u^{p}(x)} {\rm d}x, &\quad y\in{\Bbb R}^{n}, \end{array}\right. \end{equation} $ (1.8)

其中$1 < p, q < \infty$满足$\frac{1}{p+1}+\frac{1}{q+1}=\frac{n-\alpha}{n}.$方程组(1.8) 的解恰好是${\Bbb R}^{n}$上HLS不等式的极值函数.通过引入积分形式的移动平面法, 在自然可积条件$u\in L^{p+1}({\Bbb R}^{n})$$v\in L^{q+1}({\Bbb R}^{n})$下, Chen, Li和Ou[15]对方程组(1.8) 的正解进行了分类.后来, Hang[16]把这个结果发展到$\frac \alpha {n-\alpha}<p, q<\infty$$u\in L^{p+1}_{\mbox{loc}}({\Bbb R}^{n})$的情形下.对于次临界指数$\frac{1}{p+1}+\frac{1}{q+1}>\frac{n-\alpha}{n}$的情形, 当$0<p\leq\frac{n}{n-\alpha}$$0<q\leq\frac{n}{n-\alpha}$时, Chen和Li[17]证明了方程组(1.8) 正解的不存在性.特别地, 当$u=v$$p=q=\frac{2n}{n-\alpha}$时, 方程组(1.8) 简化为单个方程. Chen, Li和Ou[18]利用积分形式的移动平面法给出方程正解的分类.同时, Li[5]利用积分形式的移动球面法给出方程正解的分类.

然而, 到目前为止, 上半空间${\Bbb R}_+^n$方程组(1.1) 正解的Liouville型定理还没有得到建立.受到文献[9, 11]中结果的启发, 本文将利用积分形式的移动球面法对方程组(1.1) 建立正解的Liouville型定理.本文的主要结论有:

定理1.1  假设$f_i, g_i:\, [0, \infty)\to [0, \infty)$是非负函数且满足条件(ⅰ)和(ⅱ).并且, $(u, v)$是方程组(1.1) 的非负解, 且满足条件

$ ({\rm H}) \qquad u, \, v, \, F_i^{\frac1 {p_i}}(u )u, \, F_i^{\frac 1 {p_i-1}}(u )u, \, G_i^{\frac 1 {q_i}}(v )v, \, G_i^{\frac 1 {q_i-1}}(v )v \in{L^{\theta}({\Bbb R}^{n}_+)}, $

其中$\theta=\frac {2n}{n-\alpha}$.则对任意的$\frac{n}{n-\alpha}<s<\infty $, 有$ u, v\in L^s ({\Bbb R}_+^n)\bigcap L^\infty({\Bbb R}_+^n) $.并且, $u, v \in C^\infty({\Bbb R}_+^n)$.

定理1.2  在定理1.1的条件下, 方程组(1.1) 只有平凡解.

注1  定理1.2的证明主要采用积分形式的移动球面法, 这个方法首次由Li和Zhu[7]提出.随后, Li, Zhang[6]和Li[5]分别改进了Li和Zhu的结果.移动球面法可以快速地表明具有共形不变的椭圆方程解的表达式, 并且还可以证明具有次临界指数的椭圆方程解的不存在性, 无需事先给出方程解的对称性.

注2  近几年来, 非线性方程解的性质逐渐成为研究热点.例如, 赵金虎等[19]利用移动平面法研究了一类完全非线性椭圆型方程组解的对称性.胡良根[20]利用Pohozaev恒等式研究了非线性Hénon方程解的Liouville型定理.

本文组织如下:第$2$节证明方程组(1.1) 正解的正则性结论(定理1.1).第$3$节给出本文要用到的一些引理.第$4$节利用积分形式的移动球面法证明定理1.2.

2 正则性结果

在这一节, 我们证明方程组(1.1) 正解的正则性结果.对于$R>0, $

$ \ \ \ \ \ \ \ \ \ \ \ B_R(x)=\{y\in{\Bbb R}^n\, |\, |y-x|\leq R, x\in{\Bbb R}^n\}, \\ B_R^+(x)=\{y=(y_1, y_2, \cdots, y_n)\in B_R(x)\, |\, y_n>0, x\in\partial{\Bbb R}^{n}_+\}, \\ \ \ \ \ \ \ \ \ \ \ \ \Sigma_{x, \lambda}=\{y\in{\Bbb R}_+^n:\ |y-x|\geq\lambda, \ x\in\partial{\Bbb R}_+^n\}. $

$x=0$时, 记$B_R=B_R(0), B_R^+=B_R^+(0), \Sigma_{R}=\Sigma_{0, R}$.在后文中, 用$\|u\|_p$来表示相应区域上的$L^p$范数.

首先, 回顾${\Bbb R}^n_+$上的HLS不等式(可参见文献[21-22]):令$C(n, \alpha, p)$是一个正常数, 且定义

$ Tf(x)=\int_{{\Bbb R}_+^n} f(y)|x-y|^{n-\alpha}{\rm d}y, $

则对任意的$p>\frac{n}{n-\alpha}$, 有

$ \begin{equation}\label{HLS} \|Tf\|_p\le C(n, \alpha, p)\|f\|_{\frac{np}{n+\alpha p}}. \end{equation} $ (2.1)

定义

$u_R(x)= \left\{\begin{array}{ll}u(x), \quad&\mbox{若}~~|u(x)|>R \quad\mbox{或}\quad |x|>R, \\ 0, \quad& \mbox{否则}, \end{array}\right. $

$ u_b(x)=u(x)-u_R(x). $

显然, $u_b(x)$有界, 且$\mbox{supp}u_b \subset B_R^+(0)$.类似地定义$v_R$$v_b$.对$\frac n{n-\alpha}<s<\infty$, 假设$\phi, \varphi \in L^s({\Bbb R}_+^n) $.记

$ T_1(\varphi)=\int_{{\Bbb R}_+^n} \Big(\frac{1}{|x-y|^{n-\alpha}}-\frac{1}{|\bar{x}-y|^{n-\alpha}}\Big) F_1(u_R(y))G_1(v_R(y))u_R^{p_1}(y)v_R^{q_1-1}(y)\varphi(y){\rm d}y.\\ T_2(\phi)=\int_{{\Bbb R}_+^n} \Big(\frac{1}{|x-y|^{n-\alpha}}-\frac{1}{|\bar{x}-y|^{n-\alpha}}\Big) F_2(u_R(y))G_2(v_R(y))u_R^{p_2-1}(y)v_R^{q_2}(y)\phi(y){\rm d}y.\\ H_R(x)=\int_{{\Bbb R}_+^n} \Big(\frac{1}{|x-y|^{n-\alpha}}-\frac{1}{|\bar{x}-y|^{n-\alpha}}\Big) F_1(u_b(y))G_1(v_b(y))u_b^{p_1}(y)v_b^{q_1-1}(y)v(y){\rm d}y.\\ I_R(x)=\int_{{\Bbb R}_+^n} \Big(\frac{1}{|x-y|^{n-\alpha}}-\frac{1}{|\bar{x}-y|^{n-\alpha}}\Big) F_2(u_b(y))G_2(v_b(y))u_b^{p_2-1}(y)v_b^{q_2}(y)u(y){\rm d}y. $

定义$L^{s}({\Bbb R}_+^n)\times L^{s}({\Bbb R}_+^n)$上的范数为

$ \|(\varphi, \phi)\|_{s\times s}=\|\varphi\|_{s}+\|\phi\|_{s}, $

并且, 记$T\, :\, L^{s}({\Bbb R}_+^n)\times L^{s}({\Bbb R}_+^n)\to L^{s}({\Bbb R}_+^n)\times L^{s}({\Bbb R}_+^n)$为映射

$ T(\varphi, \phi)=(T_1(\varphi), T_2(\phi)). $

定理1.1的证明  第一步. 首先对任意的$s> \frac{n}{n-\alpha}$, 证明$u, v\in L^s ({\Bbb R}_+^n)$.事实上, 对任意的$\varphi, \phi\in L^s({\Bbb R}_+^n)$, 由HLS不等式(2.1)及Hölder不等式, 有

$ \begin{eqnarray}\label{reg-1} \|T_1(\varphi)\|_{s} &\leq& C \big\|F_1(u_R)G_1(v_R)u_R^{p_1}v_R^{q_1-1}\varphi\big\| _{\frac{ns}{n+\alpha s}}\nonumber\\ &\leq& C \big\|{F_1^{1/{p_1}}(u_R)u_R}\big\|^{p_1}_{\theta}\big\|{G_1^{1/{q_1-1}}(v_R)v_R}\big\|^{q_1-1}_{\theta} \|\varphi\|_{s}, \end{eqnarray} $ (2.2)

其中$\theta=\frac{n(p_1+q_1-1)}{\alpha}=\frac{2n}{n-\alpha}$$p_1 + q_1=\frac{n+\alpha}{n-\alpha}.$

由于${F_1^{1/{p_1}}(u)u}, $$\, G_1^{1/{q_1-1}}(v)v\in L^{\theta}({\Bbb R}_+^n), $可以选择充分大的$R$使得如下不等式成立

$ C \big\|{F_1^{1/{p_1}}(u_R)u_R}\big\|^{p_1}_{\theta}\big\|{G_1^{1/{q_1-1}}(v_R)v_R}\big\|^{q_1-1}_{\theta}\leq \frac{1}{2}. $

因此, 由(2.2) 式推出

$ \begin{eqnarray}\label{reg-2} \|T_1 (\varphi)\|_{s }\leq \frac{1}{2}\|\varphi\|_{s} . \end{eqnarray} $ (2.3)

类似地, 有

$ \begin{eqnarray}\label{reg-3} \|T_2 (\phi)\|_{s }\leq \frac{1}{2}\|\phi\|_{s}. \end{eqnarray} $ (2.4)

从(2.3) 式及(2.4) 式, 推出

$ \|T(\varphi, \phi)\|_{s\times s}\le\frac{1}{2}\Big(\|\varphi\|_{s}+\|\phi\|_s\Big). $

因此, $T$是从$L^{s}({\Bbb R}_+^n)\times L^{s}({\Bbb R}_+^n)$到自身的压缩映射.

根据(1.1) 式, 容易证明

$ (u, v) =T (u, v) +(H_R, I_R). $

由于函数$u_b$和函数$v_b$${\Bbb R}_+^n$中都是一致有界且有紧支集, 且$F_i, \, G_i \, (i=1, 2)$都是局部有界的, 因此从(2.1) 式推出

$ H_R, \, I_R\in L^s({\Bbb R}_+^n). $

根据正则提升定理(参见文献[22, 定理3.3.1]),

$ u, v\in L^s({\Bbb R}_+^n), \quad \frac{n}{n-\alpha}<s<\infty. $

利用类似文献[13]中的推导, 可以证明$u, v\in L^\infty({\Bbb R}_+^n)$.

第二步.对$R>0$, 记

$ u_1(x)=\int_{B_R^+(0)}\Big(\frac{1}{|x-y|^{n-\alpha}}-\frac{1}{|\bar{x}-y|^{n-\alpha}}\Big)F_1(u(y))G_1(v(y))u^{p_1}(y)v^{q_1}(y){\rm d}y, \\ v_1(x)=\int_{B_R^+(0)}\Big(\frac{1}{|x-y|^{n-\alpha}}-\frac{1}{|\bar{x}-y|^{n-\alpha}}\Big)F_2(u(y))G_2(v(y))u^{p_2}(y)v^{q_2}(y){\rm d}y, \\ u_2(x)=\int_{{\Bbb R}_+^n\backslash B_R^+(0)}\Big(\frac{1}{|x-y|^{n-\alpha}}-\frac{1}{|\bar{x}-y|^{n-\alpha}}\Big)F_1(u(y))G_1(v(y))u^{p_1}(y)v^{q_1}(y){\rm d}y, \\ v_2(x)=\int_{{\Bbb R}_+^n\backslash B_R^+(0)}\Big(\frac{1}{|x-y|^{n-\alpha}}-\frac{1}{|\bar{x}-y|^{n-\alpha}}\Big)F_2(u(y))G_2(v(y))u^{p_2}(y)v^{q_2}(y){\rm d}y. $

于是, 我们有

$ u(x)=u_1(x)+u_2(x)\quad\mbox{及}\quad v(x)=v_1(x)+v_2(x). $

注意到$u_2, v_2\in C^\infty({\Bbb R}_+^n)$, $R>0$, 且$u_1$$v_1$$B_R^{+}(0)\backslash\{0\}$中是Hölder连续的.因为$R$是任意的, 所以$u, v$${\Bbb R}^{n}_+$中至少是Hölder连续的.故由靴套定理推出$u, v\in C^\infty({{\Bbb R}^{n}_+})$.

3 方程组(1.1)的Kelvin变换

在这一节中, 我们列出几个本文要用到的引理.首先, Kelvin变换定义为

$ \omega_{x, \lambda}(\xi)=\left(\frac\lambda{|\xi-x|}\right)^{n-\alpha}\omega(\xi^{x, \lambda}), \quad\xi\in {\Bbb R}^n_+, $

其中$\xi^{x, \lambda}=x+\frac{\lambda^2(\xi-x)}{|\xi-x|^2}, x\in\partial {\Bbb R}^n_+, \lambda>0.$

我们首先建立如下引理.

引理3.1  令$1<\alpha<n, $$(u, v)$是方程组(1.1) 的一组正解.则对$x\in \partial{\Bbb R}^{n}$, 有

$ \begin{eqnarray} u_{x, \lambda}(\xi) &=&\int_{{\Bbb R}^n_+}\Big(\frac{1}{|\xi-z|^{n-\alpha}}-\frac{1}{|\bar{\xi}-z|^{n-\alpha}}\Big)\nonumber\\ &&\cdot \bigg[F_1\Big(\Big(\frac{|z-x|}{\lambda}\Big)^{n-\alpha}u_{x, \lambda}(z)\Big) G_1\Big(\Big(\frac{|z-x|}{\lambda}\Big)^{n-\alpha}v_{x, \lambda}(z)\Big) u_{x, \lambda}^{p_1}(z)v_{x, \lambda}^{q_1}(z)\bigg]{\rm d}z, \label{K-1} \end{eqnarray} $ (3.1)
$ \begin{eqnarray} v_{x, \lambda}(\xi) &=&\int_{{\Bbb R}^n_+}\Big(\frac{1}{|\xi-z|^{n-\alpha}}-\frac{1}{|\bar{\xi}-z|^{n-\alpha}}\Big)\nonumber\\ &&\cdot \bigg[F_2\Big(\Big(\frac{|z-x|}{\lambda}\Big)^{n-\alpha}u_{x, \lambda}(z)\Big) G_2\Big(\Big(\frac{|z-x|}{\lambda}\Big)^{n-\alpha}v_{x, \lambda}(z)\Big) u_{x, \lambda}^{p_2}(z)v_{x, \lambda}^{q_2}(z)\bigg]{\rm d}z.\label{K-2} \end{eqnarray} $ (3.2)

并且,

$ \begin{eqnarray} & &u_{x, \lambda}(\xi)-u(\xi)\nonumber\\ & =&\int_{\Sigma_{x, \lambda}}P(x, \lambda;\xi, z) \bigg[F_1\Big(\Big(\frac{|z-x|}{\lambda}\Big)^{n-\alpha}u_{x, \lambda}(z)\Big) G_1\Big(\Big(\frac{|z-x|}{\lambda}\Big)^{n-\alpha}v_{x, \lambda}(z)\Big) u_{x, \lambda}^{p_1}(z)v_{x, \lambda}^{q_1}(z)\nonumber\\ & & -F_1(u(z))G _1(v(z)) u^{p_1}(z)v^{q_1}(z)\bigg]{\rm d}z, \label{K-3} \end{eqnarray} $ (3.3)
$ \begin{eqnarray} & &v_{x, \lambda}(\xi)-v(\xi)\nonumber\\ & =&\int_{\Sigma_{x, \lambda}}P(x, \lambda;\xi, z) \bigg[F_2\Big(\Big(\frac{|z-x|}{\lambda}\Big)^{n-\alpha}u_{x, \lambda}(z)\Big) G_2\Big(\Big(\frac{|z-x|}{\lambda}\Big)^{n-\alpha}v_{x, \lambda}(z)\Big) u_{x, \lambda}^{p_2}(z)v_{x, \lambda}^{q_2}(z)\nonumber\\ & &-F_2(u(z))G _2(v(z)) u^{p_2}(z)v^{q_2}(z)\bigg]{\rm d}z, \label{K-4} \end{eqnarray} $ (3.4)

其中,

$ P(x, \lambda;\xi, z)=\Big(\frac{1}{|\xi-z|^{n-\alpha}}-\frac{1}{|\bar{\xi}-z|^{n-\alpha}}\Big) -\Big(\frac\lambda{|\xi-x|}\Big)^{n-\alpha}\Big(\frac{1}{|\xi^{x, \lambda}-z|^{n-\alpha}}-\frac{1}{|\bar{\xi}^{x, \lambda}-z|^{n-\alpha}}\Big). $

并且, 我们有

$ P(x, \lambda;\xi, z)>0, ~~~~~\mbox{对}~\forall \, \xi, \, z\in\Sigma_{x, \lambda}, \, \lambda>0. $

  对任意的$x\in\partial{\Bbb R}^n_+, z\in{\Bbb R}^n_+$, 令

$ y=z^{x, \lambda}=x+\frac{\lambda^2(z-x)}{|z-x|^2}. $

则我们有

$ {\rm d}y=\Big(\frac{\lambda}{|z-x|}\Big)^{2n}{\rm d}z. $

为简单起见, 记

$ A^+(\xi^{x, \lambda})=\int_{\Sigma_{x, \lambda}}\frac{f_1(u(y))g_1(v(y))}{|\xi^{x, \lambda}-y|^{n-\alpha}}{\rm d}y, \quad A^-(\xi^{x, \lambda})=\int_{B^+_\lambda(x)}\frac{f_1(u(y))g_1(v(y))}{|\xi^{x, \lambda}-y|^{n-\alpha}}{\rm d}y, $

因此, 方程组(1.1) 中的$u(\xi^{x, \lambda})$重新记为

$ u(\xi^{x, \lambda})=(A^+(\xi^{x, \lambda})+A^-(\xi^{x, \lambda})) -(A^+(\bar{\xi}^{\bar{x}, \lambda})+A^-(\bar{\xi}^{\bar{x}, \lambda})), ~\mbox{对}~~\xi\in{\Bbb R}^n_+, \, x\in\partial {\Bbb R}^n_+. $

$y=z^{x, \lambda}$, 直接计算得

$\begin{eqnarray*} A^+(\xi^{x, \lambda})&=&\int_{B^+_\lambda(x)}\frac{f_1(u(z^{x, \lambda}))g_1(v(z^{x, \lambda}))}{|\xi^{x, \lambda}-z^{x, \lambda}|^{n-\alpha}} \Big(\frac{\lambda}{|z-x|}\Big)^{2n}{\rm d}z\\ &=&\int_{B^+_\lambda(x)}\frac{F_1(u(z^{x, \lambda})) G_1(v(z^{x, \lambda})) u_{x, \lambda}^{p_1}(z)v_{x, \lambda}^{q_1}(z)}{|\xi^{x, \lambda}-z^{x, \lambda}|^{n-\alpha}} \Big(\frac{\lambda}{|z-x|}\Big)^{2n-\tau(n-\alpha)}{\rm d}z, \end{eqnarray*} $

其中$\tau:=p_1 + q_1=\frac{n+\alpha}{n-\alpha}.$利用如下关系式[5]

$ \frac{|z-x|}\lambda\frac{|\xi-x|}\lambda|\xi^{x, \lambda}-z^{x, \lambda}|=|\xi-z|, $

我们推出

$ \begin{eqnarray*} A^+_{x, \lambda}(\xi)&=&\Big(\frac\lambda{|\xi-x|}\Big)^{n-\alpha}A^+(\xi^{x, \lambda})\\ &=&\int_{B^+_\lambda(x)}\frac{F_1(\big(\frac{|z-x|}{\lambda}\big)^{n-\alpha}u_{x, \lambda}(z)) G_1(\big(\frac{|z-x|}{\lambda}\big)^{n-\alpha}v_{x, \lambda}(z)) u_{x, \lambda}^{p_1}(z)v_{x, \lambda}^{q_1}(z)}{|\xi-z|^{n-\alpha}}{\rm d}z. \end{eqnarray*} $

类似地, 我们有

$ A^-_{x, \lambda}(\xi)=\int_{\Sigma_{x, \lambda}}\frac{F_1( \big(\frac{|z-x|}{\lambda}\big)^{n-\alpha}u_{x, \lambda}(z)) G_1(\big(\frac{|z-x|}{\lambda}\big)^{n-\alpha}v_{x, \lambda}(z)) u_{x, \lambda}^{p_1}(z)v_{x, \lambda}^{q_1}(z)}{|\xi-z|^{n-\alpha}}{\rm d}z, \\ A^+_{x, \lambda}(\bar{\xi}) =\Big(\frac\lambda{|\bar{\xi}-x|}\Big)^{n-\alpha}A^+(\bar{\xi}^{x, \lambda})\\ \ \ \ \ \ \ \ \ \ \ \ \ =\int_{B^+_\lambda(x)}\frac{F_1(\big(\frac{|z-x|}{\lambda}\big)^{n-\alpha}u_{x, \lambda}(z)) G_1(\big(\frac{|z-x|}{\lambda}\big)^{n-\alpha}v_{x, \lambda}(z)) u_{x, \lambda}^{p_1}(z)v_{x, \lambda}^{q_1}(z)}{|\bar{\xi}-z|^{n-\alpha}}{\rm d}z, \\ A^-_{x, \lambda}(\bar{\xi}) =\int_{\Sigma_{x, \lambda}}\frac{F_1(\big(\frac{|z-x|}{\lambda}\big)^{n-\alpha}u_{x, \lambda}(z)) G_1(\big(\frac{|z-x|}{\lambda}\big)^{n-\alpha}v_{x, \lambda}(z)) u_{x, \lambda}^{p_1}(z)v_{x, \lambda}^{q_1}(z)}{|\bar{\xi}-z|^{n-\alpha}}{\rm d}z, $

其中, 对任意的$x\in\partial{\Bbb R}^n_+, \xi\in{\Bbb R}^n_+, $用到了如下关系式:

$ |\xi-x|=|\bar{\xi}-x|, \quad |\bar{\xi}^{x, \lambda}-x|=|\xi^{x, \lambda}-x|. $

因此, 我们有

$ \begin{eqnarray*} u_{x, \lambda}(\xi) &=&\Big(A^+_{x, \lambda}(\xi)+A^-_{x, \lambda}(\xi)\Big) -\Big(A^+_{x, \lambda}(\bar{\xi})+A^-_{x, \lambda}(\bar{\xi})\Big)\\ &=&\int_{{\Bbb R}^n_+}\Big(\frac{1}{|\xi-z|^{n-\alpha}}-\frac{1}{|\bar{\xi}-z|^{n-\alpha}}\Big)\nonumber\\ && \cdot\bigg[F_1 \Big(\Big(\frac{|z-x|}{\lambda}\Big)^{n-\alpha}u_{x, \lambda}(z)\Big) G_1\Big(\Big(\frac{|z-x|}{\lambda}\Big)^{n-\alpha}v_{x, \lambda}(z)\Big) u_{x, \lambda}^{p_1}(z)v_{x, \lambda}^{q_1}(z)\bigg]{\rm d}z. \end{eqnarray*} $

这表明(3.1) 式成立.类似地可以推出(3.2) 式成立.

下面, 证明(3.3) 式.首先, 我们有

$ \begin{eqnarray}\label{K-5} u_{x, \lambda}(\xi)-u(\xi) &=& \big(A^+_{x, \lambda}(\xi)+A^-_{x, \lambda}(\xi)\big) -\big(A^+_{x, \lambda}(\bar{\xi})+A^-_{x, \lambda}(\bar{\xi})\big)\nonumber\\ & &-\Big[\big(A^+(\xi)+A^-(\xi)\big) -(A^+(\bar{\xi})+A^-(\bar{\xi}))\Big]\nonumber\\ &=& \Big[\big(A^-_{x, \lambda}(\xi)-A^-_{x, \lambda}(\bar{\xi})\big) -(A^+(\xi)-A^+(\bar{\xi}))\Big]\nonumber\\ & &+\Big[\big(A^+_{x, \lambda}(\xi)-A^+_{x, \lambda}(\bar{\xi})\big) -(A^-(\xi)-A^-(\bar{\xi}))\Big]\nonumber\\ &=&\int_{\Sigma_{x, \lambda}}\Big(\frac{1}{|\xi-z|^{n-\alpha}}-\frac{1}{|\bar{\xi}-z|^{n-\alpha}}\Big)\nonumber\\ & &\cdot\bigg[F_1\Big(\Big(\frac{|z-x|}{\lambda}\Big)^{n-\alpha}u_{x, \lambda}(z)\Big) G_1\Big(\Big(\frac{|z-x|}{\lambda}\Big)^{n-\alpha}v_{x, \lambda}(z)\Big) u_{x, \lambda}^{p_1}(z)v_{x, \lambda}^{q_1}(z)\nonumber\\ &&-F_1(u(z))G _1(v(z)) u^{p_1}(z)v^{q_1}(z)\bigg]{\rm d}z\nonumber\\ &&+\big[A^+_{x, \lambda}(\xi)-A^+_{x, \lambda}(\bar{\xi})\big]-\big[(A^-(\xi)-A^-(\bar{\xi}))\big]. \end{eqnarray} $ (3.5)

$A^-_{x, \lambda}(\xi)$$A^-_{x, \lambda}(\bar{\xi})$的计算过程, 容易证明

$ \begin{eqnarray*} A^+_{x, \lambda}(\xi)-A^+_{x, \lambda}(\bar{\xi}) &=&\Big(\frac\lambda{|\xi-x|}\Big)^{n-\alpha}\Big(A^+(\xi^{x, \lambda})-A^(\bar{\xi}^{x, \lambda})\Big)\\ &=&\Big(\frac\lambda{|\xi-x|}\Big)^{n-\alpha} \int_{\Sigma_{x, \lambda}}\Big(\frac{1}{|\xi^{x, \lambda}-z|^{n-\alpha}}-\frac{1}{|\bar{\xi}^{x, \lambda}-z|^{n-\alpha}}\Big) \\ &&\cdot F_1(u(z))G _1(v(z)) u^{p_1}(z)v^{q_1}(z){\rm d}z. \end{eqnarray*} $

$A^+_{x, \lambda}(\xi)$$A^+_{\bar{x}, \lambda}(\bar{\xi})$的计算过程, 并利用$(\xi^{x, \lambda})^{x, \lambda}=\xi, $ $(\omega_{x, \lambda})_{x, \lambda}=\omega$$|\xi^{x, \lambda}-x|=\frac{\lambda^2}{|\xi-x|}$, 推出

$ \begin{eqnarray*} &&A^-(\xi)-A^-(\bar{\xi})\\ &=&A^-((\xi^{x, \lambda})^{x, \lambda})-A^-(\bar{\xi}^{x, \lambda})^{x, \lambda})\\ & =&\int_{B^+_\lambda(x)}\Big(\frac{1}{|(\xi^{x, \lambda})^{x, \lambda} -z|^{n-\alpha}}-\frac{1}{|({\bar{\xi}}^{x, \lambda})^{x, \lambda}-z |^{n-\alpha}}\Big)\\ &&\cdot F_1(u(z))G _1(v(z)) u^{p_1}(z)v^{q_1}(z){\rm d}z\\ &=&\Big(\frac\lambda{|\xi^{x, \lambda}-x|}\Big)^{\alpha-n} \int_{\Sigma_{x, \lambda}}\Big(\frac{1}{|\xi^{x, \lambda}-z|^{n-\alpha}}-\frac{1}{|\bar{\xi}^{x, \lambda}-z|^{n-\alpha}}\Big)\\ & &\cdot\bigg[F_1 \Big(\Big(\frac{|z-x|}{\lambda}\Big)^{n-\alpha}u_{x, \lambda}(z)\Big) G_1\Big(\Big(\frac{|z-x|}{\lambda}\Big)^{n-\alpha}v_{x, \lambda}(z)\Big) u_{x, \lambda}^{p_1}(z)v_{x, \lambda}^{q_1}(z)\bigg]{\rm d}z\\ &=&\Big(\frac\lambda{|\xi-x|}\Big)^{n-\alpha} \int_{\Sigma_{x, \lambda}}\Big(\frac{1}{|\xi^{x, \lambda}-z|^{n-\alpha}}-\frac{1}{|\bar{\xi}^{x, \lambda}-z|^{n-\alpha}}\Big)\\ & &\cdot\bigg[F_1 \Big(\Big(\frac{|z-x|}{\lambda}\Big)^{n-\alpha}u_{x, \lambda}(z)\Big) G_1\Big(\Big(\frac{|z-x|}{\lambda}\Big)^{n-\alpha}v_{x, \lambda}(z)\Big) u_{x, \lambda}^{p_1}(z)v_{x, \lambda}^{q_1}(z)\bigg]{\rm d}z. \end{eqnarray*} $

将上面两个不等式带入(3.5) 式, 可以得到(3.3) 式.类似地, (3.4) 式也可得证.与文献[9, 11-12]中的推导类似, 有$ P(x, \lambda;\xi, z)>0, $$ \forall |\xi-x|, \, |z-x|\geq\lambda>0$.因此, 引理3.1得证.

特别地, 当$F_i, G_i(i=1, 2)$为常数时, (3.1) 式与(3.2) 式是方程组(1.1) 的共形不变形式, 参见文献[23]及其中的文献.

本文还需要如下的两个引理.第一个引理由文献[5]给出, 并且在更强假设下的结论由Li和Zhu[7]及Li和Zhang[6]给出.第二个引理由Dou和Zhu[12]给出, 它把文献[5]中的引理$5.7$推广到了上半空间.

引理3.2[5, 引理5.8]  令$n\ge 1$, $\mu \in {\Bbb R}$, 及$f\in C^0({\Bbb R}^n).$假设对任意的$x\in{\Bbb R}^n$, 存在$\lambda>0$使得

$ \Big(\frac\lambda{|y-x|}\Big)^\mu f\Big(x+\frac{\lambda^2(y-x)}{|y-x|^2}\Big)= f(y), \ \ \quad ~ \forall y\in{\Bbb R}^n\setminus\{x\}. $

因此, 存在$a\ge0, d>0$$\bar{x}\in{\Bbb R}^n$, 使得

$ f(x)\equiv\pm a\Big(\frac1 {d+|x-\bar{x}|^2}\Big)^\frac{\mu}2. $

引理3.3[12, 引理3.7]  对$n\ge 1$$\mu \in {\Bbb R}$, 若$f$是定义在${\Bbb R}^n_+$上的实值函数且满足

$ \Big(\frac\lambda{|y-x|}\Big)^\mu f\Big(x+\frac{\lambda^2(y-x)}{|y-x|^2}\Big)\le f(y), \quad\forall\lambda>0, ~ y\in\Sigma_{x, \lambda}, y\in{\Bbb R}^n_+, x\in\partial{\Bbb R}^n_+, $

则我们有

$ f(z)=f(z', t)=f(0, t), ~~~~~~\forall\, z=(z', t)\in{\Bbb R}^n_+. $
4 定理1.2的证明

本节利用积分形式的移动球面法证明定理1.2.记

$ \begin{eqnarray*} \Sigma_{x, \lambda}^{u}=\{y\in\Sigma_{x, \lambda}:\ u(y)<u_{x, \lambda}(y)\}, ~~\Sigma_{x, \lambda}^{v}=\{y\in\Sigma_{x, \lambda}:\ v(y)<v_{x, \lambda}(y)\}. \end{eqnarray*} $

首先建立方程组(1.1) 正解的单调性引理.

引理4.1  令$u$是方程组(1.1) 的正解.则对任意的$x\in\partial{\Bbb R}_+^n$, 存在$\lambda_0(x)>0$使得

$ \begin{equation}\label{monotony-1} u_{x, \lambda}(\xi)\leq u(\xi), \quad v_{x, \lambda}(\xi)\leq v(\xi), \quad\quad\forall 0<\lambda<\lambda_0(x), \ \forall \xi\in\Sigma_{x, \lambda}. \end{equation} $ (4.1)

  利用(3.3) 式, 假设(ⅰ), (ⅱ)及平均值定理, 对$\xi\in\Sigma_{x, \lambda}^{u}$, 我们有

$ \begin{eqnarray}\label{monotony-2} 0&\leq &u_{x, \lambda}(\xi)-u(\xi)\nonumber\\ &\leq&\int_{\Sigma_{x, \lambda}}P(x, \lambda;\xi, z) \big[F_1(u_{x, \lambda}(z)) G_1(v_{x, \lambda}(z)) u_{x, \lambda}^{p_1}(z)v_{x, \lambda}^{q_1}(z)\nonumber\\ &&-F_1(u(z))G _1(v(z)) u^{p_1}(z)v^{q_1}(z)\big]{\rm d}z\nonumber\\ &=&\int_{\Sigma_{x, \lambda}}P(x, \lambda;\xi, z) f_1(u_{x, \lambda}(z)) \big[g_1(v_{x, \lambda}(z))-g _1(v(z))\big]{\rm d}z\nonumber\\ && +\int_{\Sigma_{x, \lambda}}P(x, \lambda;\xi, z) g_1(v(z)) \big[f_1(u_{x, \lambda}(z))-f_1(u(z))\big]{\rm d}z\nonumber\\ &\leq&\int_{\Sigma^v_{x, \lambda}}P(x, \lambda;\xi, z) f_1(u_{x, \lambda}(z)) \big[g_1(v_{x, \lambda}(z))-g _1(v(z))\big]{\rm d}z\nonumber\\ && +\int_{\Sigma^u_{x, \lambda}}P(x, \lambda;\xi, z) g_1(v(z)) \big[f_1(u_{x, \lambda}(z))-f_1(u(z))\big]{\rm d}z\nonumber\\ &\leq& \int_{\Sigma_{x, \lambda}^v}\frac{1}{|\xi-z|^{n-\alpha}}F_1(u_{x, \lambda}(z)) u_{x, \lambda}^{p_1}(z) G_1(v_{x, \lambda}(z)) \left[v^{q_1}_{x, \lambda}(z)-v^{q_1}(z)\right]{\rm d}z\nonumber\\ && +\int_{\Sigma_{x, \lambda}^u}\frac{1}{|\xi-z|^{n-\alpha}} G _1(v(z))v^{q_1}(z)F_1(u_{x, \lambda}(z)) \left[u^{p_1}_{x, \lambda}(z)-u^{p_1}(z)\right]{\rm d}z\nonumber\\ &\leq& \int_{\Sigma_{x, \lambda}^v}\frac{q_1}{|\xi-z|^{n-\alpha}}F_1(u_{x, \lambda}(z)) G_1(v_{x, \lambda}(z)) u_{x, \lambda}^{p_1}(z)v_{x, \lambda}^{q_1-1}(z) \left[v_{x, \lambda}(z)-v(z)\right]{\rm d}z\nonumber\\ && +\int_{\Sigma_{x, \lambda}^u}\frac{p_1}{|\xi-z|^{n-\alpha}}F_1(u_{x, \lambda}(z)) G _1(v(z)) u^{p_1-1}(z)v^{q_1}(z) \left[u_{x, \lambda}(z)-u(z)\right]{\rm d}z\nonumber\\ &=:&q_1I_1+p_1I_2. \end{eqnarray} $ (4.2)

$\theta=\frac {2n}{n-\alpha}$, 则对$I_1$利用HLS不等式(2.1) 及广义的Hölder不等式推出

$ \begin{eqnarray}\label{monotony-3} &&\big\|I_1\big\|_{{L^\theta}{(\Sigma_{x, \lambda}^u)}}\\ & \leq& C(n, \theta) \big\|F_1(u_{x, \lambda}) G_1(v_{x, \lambda}) u_{x, \lambda}^{p_1}v_{x, \lambda}^{q_1-1} \left(v_{x, \lambda}-v\right)\|_{{L^{\frac{n\theta}{n+\alpha\theta}}}{(\Sigma_{x, \lambda}^v)}}\nonumber\\ &\leq& C(n, \theta)\big\|F_1^{1/{p_1}}(u_{x, \lambda})u_{x, \lambda}\big\|^{p_1}_{{L^{\theta}}{(\Sigma_{x, \lambda}^v)}} \big\|G_1^{1/{(q_1-1)}}(v_{x, \lambda})v_{x, \lambda}\big\|^{q_1-1}_{{L^{\theta}}{(\Sigma_{x, \lambda}^v)}} \big\|v_{x, \lambda}-v\big\|_{{L^\theta}{(\Sigma_{x, \lambda}^v)}}, \end{eqnarray} $ (4.3)

这里利用到了关系式

$ \frac{p_1}{\theta}+\frac {q_1-1}{\theta}+\frac {1}{\theta}=\frac{n+\alpha\theta}{n\theta}. $

类似(4.3) 式的推导, 有

$\begin{eqnarray}\label{monotony-4} &&\big\|I_2\big\|_{{L^\theta}{(\Sigma_{x, \lambda}^u)}}\\ & \leq& C(n, \theta) \big\|F_1(u_{x, \lambda}) G_1(v) u_{x, \lambda}^{p_1-1}v^{q_1} \left(u_{x, \lambda}-u\right)\|_{{L^{\frac{n\theta}{n+\alpha\theta}}}{(\Sigma_{x, \lambda}^u)}}\nonumber\\ &\leq& C(n, \theta)\big\|F_1^{1/{(p_1-1)}}(u_{x, \lambda})u_{x, \lambda}\big\|^{p_1-1}_{{L^{\theta}}{(\Sigma_{x, \lambda}^u)}} \big\|G_1^{1/{q_1}}(v)v\big\|^{q_1}_{{L^{\theta}}{(\Sigma_{x, \lambda}^u)}} \big\|u_{x, \lambda}-u\big\|_{{L^\theta}{(\Sigma_{x, \lambda}^u)}}. \end{eqnarray} $ (4.4)

根据(4.2)-(4.4) 式, 推出

$ \begin{eqnarray}\label{monotony-5} && \big\|u_{x, \lambda}-u\big\|_{{L^\theta}{(\Sigma_{x, \lambda}^u)}} \\ &\leq& c\big\|F_1^{1/{(p_1-1)}}(u)u\big\|^{p_1-1}_{{L^{\theta}}{(\Sigma_{x, \lambda}^C)}} \big\|G_1^{1/{q_1}}(v)v\big\|^{q_1}_{{L^{\theta}}{(\Sigma_{x, \lambda})}} \big\|u_{x, \lambda}-u\big\|_{{L^\theta}{(\Sigma_{x, \lambda}^u)}}\nonumber\\ && +c\big\|F_1^{1/{p_1}}(u)u\big\|^{p_1}_{{L^{\theta}}{(\Sigma_{x, \lambda}^C)}} \big\|G_1^{1/{(q_1-1)}}(v)v\big\|^{q_1-1}_{{L^{\theta}}{(\Sigma_{x, \lambda}^C)}} \big\|v_{x, \lambda}-v\big\|_{{L^\theta}{(\Sigma_{x, \lambda}^v)}}, \end{eqnarray} $ (4.5)

其中$\Sigma_{x, \lambda}^C$$\Sigma_{x, \lambda}$的补集.类似地, 可以证明

$ \begin{eqnarray}\label{monotony-6} && \big\|v_{x, \lambda}-v\big\|_{{L^\theta}{(\Sigma_{x, \lambda}^v)}} \\ &\leq& c\big\|F_2^{1/{(p_2-1)}}(u)u\big\|^{p_2-1}_{{L^{\theta}}{(\Sigma_{x, \lambda}^C)}} \big\|G_2^{1/{q_2}}(v)v\big\|^{q_2}_{{L^{\theta}}{(\Sigma_{x, \lambda})}} \big\|u_{x, \lambda}-u\big\|_{{L^\theta}{(\Sigma_{x, \lambda}^u)}}\nonumber\\ && +c\big\|F_2^{1/{p_2}}(u)u\big\|^{p_2}_{{L^{\theta}}{(\Sigma_{x, \lambda}^C)}} \big\|G_2^{1/{(q_2-1)}}(v)v\big\|^{q_2-1}_{{L^{\theta}}{(\Sigma_{x, \lambda}^C)}} \big\|v_{x, \lambda}-v\big\|_{{L^\theta}{(\Sigma_{x, \lambda}^v)}}. \end{eqnarray} $ (4.6)

结合(4.5) 和(4.6) 式, 推出

$ \begin{eqnarray}\label{monotony-7} &&\big\|u_{x, \lambda}-u\big\|_{{L^\theta}{(\Sigma_{x, \lambda}^u)}}+\big\|v_{x, \lambda}-v\big\|_{{L^\theta}{(\Sigma_{x, \lambda}^v)}}\nonumber\\ &\leq& c\Big(\big\|F_1^{1/{(p_1-1)}}(u)u\big\|^{p_1-1}_{{L^{\theta}}{(\Sigma_{x, \lambda}^C)}} \big\|G_1^{1/{q_1}}(v)v\big\|^{q_1}_{{L^{\theta}}{(\Sigma_{x, \lambda})}}\nonumber\\ &&+\big\|F_2^{1/{(p_2-1)}}(u)u\big\|^{p_2-1}_{{L^{\theta}}{(\Sigma_{x, \lambda}^C)}} \big\|G_2^{1/{q_2}}(v)v\big\|^{q_2}_{{L^{\theta}}{(\Sigma_{x, \lambda})}} \Big)\big\|{u_{x, \lambda}-u}\big\|_{L^\theta {(\Sigma_{x, \lambda}^u)}}\nonumber\\ &&+c\Big(F_1^{1/{p_1}}(u)u\big\|^{p_1}_{{L^{\theta}}{(\Sigma_{x, \lambda}^C)}} \big\|G_1^{1/{(q_1-1)}}(v)v\big\|^{q_1-1}_{{L^{\theta}}{(\Sigma_{x, \lambda}^C)}}\nonumber\\ &&+\big\|F_2^{1/{p_2}}(u)u\big\|^{p_2}_{{L^{\theta}}{(\Sigma_{x, \lambda}^C)}} \big\|G_2^{1/{(q_2-1)}}(v)v\big\|^{q_2-1}_{{L^{\theta}}{(\Sigma_{x, \lambda}^C)}} \Big)\big\|v_{x, \lambda}-v\big\|_{L^\theta{(\Sigma_{x, \lambda}^v)}}. \end{eqnarray} $ (4.7)

根据假设(H), 选取足够小的$\lambda_0(x)$使得对$0<\lambda<\lambda_0$, 有

$ \begin{eqnarray*} &&c\Big(\big\|F_1^{1/{(p_1-1)}}(u)u\big\|^{p_1-1}_{{L^{\theta}}{(\Sigma_{x, \lambda}^C)}} \big\|G_1^{1/{q_1}}(v)v\big\|^{q_1}_{{L^{\theta}}{(\Sigma_{x, \lambda})}} \\ && +\big\|F_2^{1/{(p_2-1)}}(u)u\big\|^{p_2-1}_{{L^{\theta}}{(\Sigma_{x, \lambda}^C)}} \big\|G_2^{1/{q_2}}(v)v\big\|^{q_2}_{{L^{\theta}}{(\Sigma_{x, \lambda})}} \Big)\leq \frac{1}{2}, \nonumber\\ \\ &&c\Big(\|F_1^{1/{p_1}}(u)u\big\|^{p_1}_{{L^{\theta}}{(\Sigma_{x, \lambda}^C)}} \big\|G_1^{1/{(q_1-1)}}(v)v\big\|^{q_1-1}_{{L^{\theta}}{(\Sigma_{x, \lambda}^C)}}\\ &&+\big\|F_2^{1/{p_2}}(u)u\big\|^{p_2}_{{L^{\theta}}{(\Sigma_{x, \lambda}^C)}} \big\|G_2^{1/{(q_2-1)}}(v)v\big\|^{q_2-1}_{{L^{\theta}}{(\Sigma_{x, \lambda}^C)}} \Big)\leq \frac{1}{2}. \end{eqnarray*} $

因此, 我们有

$ \begin{eqnarray*} \big\|u_{x, \lambda}-u\big\|_{{L^\theta}{(\Sigma_{x, \lambda}^u)}}+\big\|v_{x, \lambda}-v\big\|_{{L^\theta}{(\Sigma_{x, \lambda}^v)}} \leq \frac{1}{2} \Big(\big\|u_{x, \lambda}-u\big\|_{{L^\theta}{(\Sigma_{x, \lambda}^u)}}+\big\|v_{x, \lambda}-v\big\|_{{L^\theta}{(\Sigma_{x, \lambda}^v)}} \Big). \end{eqnarray*} $

这表明$\big\|u_{x, \lambda}-u\big\|_{{L^\theta}{(\Sigma_{x, \lambda}^u)}}=$$\big\|v_{x, \lambda}-v\big\|_{{L^\theta}{(\Sigma_{x, \lambda}^v)}}=0$, 所以$\Sigma_{x, \lambda}^u$$\Sigma_{x, \lambda}^v$的测度都为零, 从而根据$u$$v$的连续性可知$\Sigma_{x, \lambda}^u$$\Sigma_{x, \lambda}^v$都是空集.因此, (4.1) 式得证.

$x\in\partial{\Bbb R}_+^n, \ \xi\in{\Bbb R}_+^n, $定义

$ \begin{eqnarray*} \bar{\lambda}(x)=\sup\{\mu>0:\ u_{x, \lambda}(\xi)\leq u(\xi), \ v_{x, \lambda}(\xi)\leq v(\xi), \ \forall 0<\lambda<\mu, \ \xi\in \Sigma_{x, \lambda}\}. \end{eqnarray*} $

引理4.2  若$f_i(u)=m_i u^{p_i}, \, g_i(v)=l_i v^{q_i} \, (i=1, 2), $则对任意的$x\in\partial{\Bbb R}^{n}_+$, 有$\bar{\lambda}(x)<\infty$, 并且

$ u_{x, \bar{\lambda}}(\xi)=u(\xi), \quad v_{x, \bar{\lambda}}(\xi)=v(\xi), \quad \xi\in\Sigma_{x, \bar{\lambda}}. $

$f_i(u)=m_i u^{p_i}, \, g_i(v)=l_i v^{q_i} \, (i=1, 2), $$F_i(u)=m_i, \, G_i(v)=l_i \, (i=1, 2), $这种情形的结果已由文献[9]给出, 此处省略证明.

下面将证明当$f_i(u)\neq m_i u^{p_i}$$ g_i(v)\neq l_i v^{q_i} \, (i=1, 2)$时, 球面会一直向外移动, 不会停止.

引理4.3  若$F_i(u)\neq m_i $$ G_i(v)\neq l_i \, (i=1, 2), $$\bar{\lambda}(x)=\infty$, 其中$x\in\partial{\Bbb R}^{n}_+.$

  本定理的证明与文献[11]中的引理$3.3$和文献[12]中的引理$3.4$的证明类似.利用反证法证明, 假设$F_i(u)\neq m_i $$ G_i(v)\neq l_i \, (i=1, 2), $则存在$x_0\in\partial{\Bbb R}^{n}_+$使得$\bar{\lambda}(x_0)<\infty $.于是, 根据$\bar{\lambda}$的定义推出

$ \begin{eqnarray*} u_{x_0, \bar{\lambda}}(\xi)\le u(\xi), \quad v_{x_0, \bar{\lambda}}(\xi)\le v(\xi), \quad \quad \xi\in\Sigma_{x_0, \bar{\lambda}}. \end{eqnarray*} $

$x=x_0, \lambda=\bar{\lambda}$, 根据(3.3) 和(3.4) 式推出

$ \begin{eqnarray*} u_{x_0, \bar{\lambda}}(\xi)<u(\xi), \quad v_{x_0, \bar{\xi}}(\eta)<v(\xi), \quad\quad \xi\in\Sigma_{x_0, \bar{\lambda}}. \end{eqnarray*} $

对固定的$R$和任意的$\delta>0$, 存在$c_1, c_2$使得

$ \begin{eqnarray*} u(\xi)-u_{x_0, \bar{\lambda}}(\xi)>c_1, \quad v(\xi)-v_{x_0, \bar{\lambda}}(\xi)>c_2, \quad \quad \xi\in\Sigma_{x_0, \bar{\lambda}+\delta}\cap B^+_R(x_0). \end{eqnarray*} $

因此, 可选取足够小的$\varepsilon<\delta$使得对$\lambda\in[\bar{\lambda}, \bar{\lambda}+\varepsilon)$, 有

$ \begin{eqnarray*} u(\xi)\ge u_{x_0, \lambda}(\xi), \quad v(\xi)\ge v_{x_0, \lambda}(\xi)\quad \mbox{对}~\xi\in\Sigma_{x_0, \bar{\lambda}+\delta}\cap B^+_R(x_0). \end{eqnarray*} $

上式表明$\Sigma_{x_0, \lambda}^u$$\Sigma_{x_0, \lambda}^v$$\Sigma_{x_0, \bar{\lambda}+\delta}\cap B^+_R(x_0) $没有交集.于是, $\Sigma_{x_0, \lambda}^u$$\Sigma_{x_0, \lambda}^v$都包含在如下的集合

$ \Omega_{\lambda, R}=: \Big({\Bbb R}^n_+\setminus B^{+}_R(x_0)\Big)\cup \Big(\Sigma_{x_0, \lambda}\backslash\Sigma_{x_0, \bar{\lambda}+\delta}\Big). $

并且, 在关于球面$\{\xi: |\xi-x_0|=\lambda, ~\xi\in{\Bbb R}^n_+\}$的Kelvin变换下, 集合$\Omega_{\lambda, R}$的反射集合为

$ (\Omega_{\lambda, R})^*=B_{\varepsilon_1}^+(x_0)\cup(B_{\lambda}^+(x_0)\backslash B_{\lambda^2/(\bar \lambda +\delta)}^+(x_0)), $

其中, 当$R\to \infty$时, $\varepsilon_1=\lambda/R$任意小.显然, 对足够小的$\varepsilon_1, \delta$及足够大的$R$, 集合$(\Omega_{\lambda, R})^*$的测度任意小.

类似于(4.7) 式, 对$\lambda\in[\bar{\lambda}, \bar{\lambda}+\varepsilon), $可以推出

$ \begin{eqnarray*} &&\big\|u_{x_0, \lambda}-u\big\|_{{L^\theta}{(\Sigma_{x_0, \lambda}^u)}}+\big\|v_{x_0, \lambda}-v\big\|_{{L^\theta}{(\Sigma_{x_0, \lambda}^v)}}\nonumber\\ &\leq& c\big[\big\|F_1^{1/{(p_1-1)}}(u)u\big\|^{p_1-1}_{{L^{\theta}}{((\Omega_{\lambda, R})^*)}} \big\|G_1^{1/{q_1}}(v)v\big\|^{q_1}_{{L^{\theta}}{(\Omega_{\lambda, R})}}\nonumber\\ &&+\big\|F_2^{1/{(p_2-1)}}(u)u\big\|^{p_2-1}_{{L^{\theta}}{((\Omega_{\lambda, R})^*)}} \big\|G_2^{1/{q_2}}(v)v\big\|^{q_2}_{{L^{\theta}}{(\Omega_{\lambda, R})}} \big]\big\|{u_{x, \lambda}-u}\big\|_{L^\theta {(\Sigma_{x, \lambda}^u)}}\nonumber\\ &&+c\big[F_1^{1/{p_1}}(u)u\big\|^{p_1}_{{L^{\theta}}{((\Omega_{\lambda, R})^*)}} \big\|G_1^{1/{(q_1-1)}}(v)v\big\|^{q_1-1}_{{L^{\theta}}{((\Omega_{\lambda, R})^*)}}\nonumber\\ &&+\big\|F_2^{1/{p_2}}(u)u\big\|^{p_2}_{{L^{\theta}}{((\Omega_{\lambda, R})^*)}} \big\|G_2^{1/{(q_2-1)}}(v)v\big\|^{q_2-1}_{{L^{\theta}}{((\Omega_{\lambda, R})^*)}} \big]\big\|v_{x, \lambda}-v\big\|_{L^\theta{(\Sigma_{x, \lambda}^v)}}\nonumber\\ &=:& J\big\|{u_{x, \lambda}-u}\big\|_{L^\theta {(\Sigma_{x, \lambda}^u)}}+K\big\|v_{x, \lambda}-v\big\|_{L^\theta{(\Sigma_{x, \lambda}^v)}}. \end{eqnarray*} $

根据假设(H), 可以选取足够小的$\varepsilon_1, \, \delta$及足够大的$R$, 使得对$\lambda\in[\bar{\lambda}, \bar{\lambda}+\varepsilon), $

$ J\leq \frac{1}{2}, ~~ ~~~~K\leq \frac{1}{2}. $

因此, 得到

$ \|u_{x_0, \lambda}-u\|_{L^\theta(\Sigma_{x_0, \lambda}^{u})}=\|v_{x_0, \lambda}-v\|_{L^\theta(\Sigma_{x_0, \lambda}^v)}=0. $

于是推出$\Sigma_{x_0, \lambda}^{u}$$\Sigma_{x_0, \lambda}^v$都是零测集.从而, 有

$ u_{x_0, {\lambda}}(\xi)\le u(\xi), \quad v_{x_0, {\lambda}}(\xi)\le v(\xi), \quad \mbox{对}~\xi\in\Sigma_{x_0, {\lambda}}, $

其中$ \lambda\in[\bar{\lambda}, \bar{\lambda}+\varepsilon) $, 这与$\bar{\lambda}$的定义矛盾.所以, 引理4.3得证.

定理1.2的证明  情形1  若$F_i(u)=m_i, \, G_i(v)=l_i, \, (i=1, 2), $即, $f_i(u)=m_i u^{p_i}, \, g_i(v)=l_i v^{q_i}, \, p_i + q_i=\frac{n+\alpha}{n-\alpha}.$从引理4.2, 我们推出对任意的$x\in\partial{\Bbb R}^{n}_+$, 有$\bar{\lambda}(x)<\infty$, 且

$ u_{x, \bar{\lambda}}(\xi)=u(\xi), ~~~~v_{x, \bar{\lambda}}(\xi)=v(\xi), ~~~~~~~ \forall\, \xi\in {\Bbb R}^{n}_+. $

根据定理1.1和定理3.2, 推出

$ \begin{equation}\label{Liouville-1} u(\xi', 0)=\Big(\frac{c_1}{(|\xi'-\xi_0'|^2+d^2)}\Big)^{\frac{n-\alpha}2}, \end{equation} $ (4.8)
$ \begin{equation}\label{Liouville-2} v(\xi', 0)=\Big(\frac{c_2}{(|\xi'-\xi_0'|^2+d^2)}\Big)^{\frac{n-\alpha}2}, \end{equation} $ (4.9)

其中$c_1, c_2, d>0$, $\xi_0=(\xi_0', d)\in{\Bbb R}_+^n.$

然而, 从方程组(1.1) 的第一个方程, 推出

$ \begin{eqnarray*} u(\xi', 0)&=&\lim\limits_{\xi_n\to0}u(\xi', \xi_n)\\ & =&\lim\limits_{\xi_n\to 0}\int_{{\Bbb R}^n_+}\Big(\frac1{(|\xi'-y'|^2+|\xi_n-y_n|^2)^{\frac{n-\alpha}{2}}} - \frac1{(|\xi'-y'|^2+|\xi_n+y_n|^2)^{\frac{n-\alpha}{2}}}\Big)\\ & & \cdot m_1l_1u^{p_1}(y)v^{q_1}(y){\rm d}y\\ &=&0, \end{eqnarray*} $

这与(4.8) 式矛盾.于是, 推出$u\equiv0 $.类似地, 推出$v\equiv0 $.

情形2  若$F(t)\neq m_1$$G(s)\neq m_2, $从引理4.3, 推出对任意的$x \in\partial{\Bbb R}^{n}_+$, 有$\bar{\lambda}(x)=\infty $.于是

$ \begin{eqnarray*} u_{x, \bar{\lambda}}(\xi)\leq u(\xi), \quad v_{x, \bar{\lambda}}(\xi)\leq v(\xi), \quad \forall \xi\in\Sigma_{x, \bar{\lambda}}, ~ x\in\partial{\Bbb R}_+^n. \end{eqnarray*} $

利用引理3.3, 推出$u(\xi)=u(\xi_n)$$v(\xi)=v(\xi_n)$, 其中$\xi=(\xi', \xi_n)\in {\Bbb R}^{n-1}\times (0, \infty).$

类似于文献[24], 利用Silvestre[25]的极值原理, 假设$u>0, \, v>0$.于是, 由(1.1) 式, 推出$F_i, \, G_i >0(i=1, 2).$

下面对$G(\xi, y)=:\frac{1}{|\xi-y|^{n-\alpha}}-\frac{1}{|\bar{\xi}-y|^{n-\alpha}} $进行估计.通过直接计算, 推出

$ \begin{eqnarray*} G(\xi, y)&=&\frac{1}{|\xi-y|^{n-\alpha}}\bigg[1- \Big(\frac{|\xi-y|}{|\bar{\xi}-y|}\Big)^{n-\alpha}\bigg]\\ & =&\frac{1}{|\xi-y|^{n-\alpha}}\bigg[1- \Big(\frac{|\xi'-y'|^2+|\xi_n-y_n|^2}{|\xi'-y'|^2+|\xi_n+y_n|^2} \Big)^{(n-\alpha)/2}\bigg]\\ & =&\frac{1}{|\xi-y|^{n-\alpha}}\bigg[1- \Big(1-\frac{4 \xi_n y_n}{|\bar{\xi}-y|^2}\Big)^{(n-\alpha)/2}\bigg], \end{eqnarray*} $

其中$\xi=(\xi', \xi_n), y=(y', y_n)\in {\Bbb R}^{n-1}\times (0, \infty).$

为简单起见, 记$s=|\bar{\xi}-y|^2, \, t=4 \xi_n y_n.$$s\rightarrow \infty, $$\frac t s \rightarrow 0, $则有

$ \begin{eqnarray}\label{Liouville-3} G(\xi, y)&=&\frac{1}{|\xi-y|^{n-\alpha}} \bigg[1-\Big(1-\frac{t}{s}\Big)^{(n-\alpha)/2}\bigg]\nonumber\\ & =&\frac{1}{|\xi-y|^{n-\alpha}}\cdot\frac{t}{s}\cdot K^{(n-\alpha)/2-1}(s, t)\nonumber\\ &\sim&\frac{1}{|\xi-y|^{n-\alpha}}\cdot\frac{t}{s}, \end{eqnarray} $ (4.10)

这里用到了平均值定理, 且$1-\frac{t}{s}\leq K(s, t)\leq 1.$

$r=|\xi'-y'|$$a=\xi_n+y_n.$$u(\xi)=u(\xi_n)$$v(\xi)=v(\xi_n)$是方程组(1.1) 的一组解, 则对取定的$\xi\in {\Bbb R}_+^{n}$及足够大的$R$, 由(4.10) 式推出

$ \begin{eqnarray}\label{Liouville-4} \infty>u(\xi_n)&=& \int_0 ^\infty {F_1(u(y_n))G_1(v(y_n))u^{p_1}(y_n)v^{q_1}(y_n)}\int_{{\Bbb R}^{n-1}}G(\xi, y){\rm d}y' {\rm d}y_n\nonumber\\ &\geq&C\int_R ^\infty {u^{p_1}(y_n)v^{q_1}(y_n)y_n}\int_{{\Bbb R}^{n-1}\setminus B_R^+}\frac 1 {|\bar{\xi}-y|^{n-\alpha+2}}{\rm d}y' {\rm d}y_n\nonumber\\ &\geq& C\int_R ^\infty {u^{p_1}(y_n)v^{q_1}(y_n)y_n}\int_R ^\infty\frac {r^{n-2}} {(r^2+a^2)^{(n-\alpha+2)/2}}{\rm d}r {\rm d}y_n\nonumber\\ &\geq& C\int_R ^\infty {u^{p_1}(y_n)v^{q_1}(y_n)\frac{y_n}{|\xi_n+y_n|^{3-\alpha}}}\int_{R/a} ^\infty\frac {t^{n-2}} {(t^2+1)^{(n-\alpha+2)/2}}{\rm d}t {\rm d}y_n\nonumber\\ &\geq& C\int_R ^\infty {u^{p_1}(y_n)v^{q_1}(y_n)y_n^{\alpha-2}} {\rm d}y_n. \end{eqnarray} $ (4.11)

这表明当$i\rightarrow \infty$时, 存在序列$\{y_n^i\}\rightarrow\infty$使得

$ \begin{equation}\label{Liouville-5} u^{p_1}(y_n^i)v^{q_1}(y_n^i)(y_n^i)^{\alpha}\rightarrow 0. \end{equation} $ (4.12)

类似于(4.11) 式, 对任意的$\xi=(0, \xi_n)\in {\Bbb R}_+^{n}, $可以推出

$ \begin{equation}\label{Liouville-6} \infty>u(\xi_n)\geq C_0 \int_0 ^\infty {u^{p_1}(y_n)v^{q_1}(y_n)\frac {\xi_n y_n} {|\xi_n+y_n|^{3-\alpha}}} {\rm d}y_n. \end{equation} $ (4.13)

$\xi_n=2R$足够大.由(4.13) 式推出

$ \begin{eqnarray}\label{Liouville-7} \infty>u(\xi_n)&\geq& C_0\int_0 ^1 {u^{p_1}(y_n)v^{q_1}(y_n)\frac {\xi_n y_n} {|\xi_n+y_n|^{3-\alpha}}} {\rm d}y_n\nonumber\\ &\geq&\frac{C_0}{(2R)^{3-\alpha}}(2R)\int_0 ^1 {u^{p_1}(y_n)v^{q_1}(y_n) y_n} {\rm d}y_n\nonumber\\ &\geq& C_1 (2R)^{\alpha-2} =C_1 \xi_n^{\alpha-2}. \end{eqnarray} $ (4.14)

类似地, 我们有

$ \begin{equation}\label{Liouville-8} \infty>v(\xi_n)\geq C_2 \xi_n^{\alpha-2}. \end{equation} $ (4.15)

$\alpha\geq 2$时, (4.14) 及(4.15) 式与(4.12) 式矛盾.于是, 下面只需证明$\alpha\in (0, 2)$的情形.

联合(4.13), (4.14) 及(4.15) 式, 对足够大的$\xi_n=2R$, 有

$ \begin{eqnarray*} u(\xi_n)&\geq& C_0\int_{R/2} ^R (C_1 y_n)^{p_1(\alpha-2)}(C_2 y_n)^{q_1(\alpha-2)}\frac {\xi_n y_n} {|\xi_n+y_n|^{3-\alpha}} {\rm d}y_n\\ &\geq& C(\tau, \alpha)R^{(p_1+q_1)(\alpha-2)+\alpha} =C(\tau, \alpha)\xi_n^{\tau(\alpha-2)+\alpha}, \end{eqnarray*} $

其中$\tau=p_1+q_1=\frac{n+\alpha}{n-\alpha}.$继续迭代$m$次, 对$\xi_n=2R, $推出

$ \begin{equation}\label{Liouville-9} u(\xi_n)\geq C(m, \tau, \alpha)\xi_n^{\tau^m(\alpha-2)+\frac{\tau^m-1}{\tau-1}\alpha}. \end{equation} $ (4.16)

类似地, 有

$ \begin{equation}\label{Liouville-10} v(\xi_n)\geq C(m, \tau, \alpha)\xi_n^{\tau^m(\alpha-2)+\frac{\tau^m-1}{\tau-1}\alpha}. \end{equation} $ (4.17)

从(4.16) 和(4.17) 式, 对足够大的$\xi_n$, 推出

$ \begin{equation}\label{Liouville-11} u^{p_1}(\xi_n)v^{q_1}(\xi_n){\xi_n}^{\alpha}\geq C(m, \tau, \alpha)\xi_n^{P(\tau)}> C(m, \tau, \alpha)>0, \end{equation} $ (4.18)

其中$P(\tau)=:\big[\tau^m(\alpha-2)+\frac{\tau^m-1}{\tau-1}\big]\tau+\alpha>0.$事实上, 记

$ f(\tau)=:(\tau-1)P(\tau)=\tau^{m+2}(\alpha-2)+2\tau^{m+1}-\alpha. $

则有

$ \begin{eqnarray*} f'(\tau)&=&\tau^{m}\big[\tau (m+2)(\alpha-2)+2(m+1)\big]\\ &=&\frac{\tau^{m}}{n-\alpha}\big[m(n\alpha+\alpha^2-4\alpha)-(2n+6\alpha-2n\alpha-2\alpha^2)\big]>0, \end{eqnarray*} $

其中, 当$n\geq 4, \, \alpha\in (0, 2)$时, 选取$m\geq \big[\frac{8-2\alpha-2\alpha^2}{\alpha^2} \big]+1 $, 且当$n= 4, \, \alpha\in (0, 1)\cup (1, 2)$时, $m\geq \big[\frac{6-2\alpha^2}{\alpha^2-\alpha} \big]+1 .$这里, $ \big[a \big] $表示$a$的整数.从而, $f(\tau)>f(1)=0, $$P(\tau)>0.$

显然, (4.18) 与(4.12) 式矛盾.于是推出方程组(1.1) 没有正解.

参考文献
[1] Cao L F, Dai Z H. A Liouville-type theorem for an integral equation on a half-space $\mathbb{R}_{+}^{n}$. Journal of Mathematical Analysis and Applications, 2012, 389: 1365–1373. DOI:10.1016/j.jmaa.2012.01.015
[2] Damascelli L, Gladiali F. Some nonexistence results for positive solutions of elliptic equations in unbounded domains. Revista Matematica Iberoamericana, 2004, 20: 67–86.
[3] Dancer E N, Wei J, Weth T. A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system. Annales De Linstitut Henri Poincaré Non Linéar Analysis, 2010, 27: 953–969. DOI:10.1016/j.anihpc.2010.01.009
[4] Gidas B, Spruck J. A Priori bounds for positive solutions of nonlinear elliptic equations. Communications in Partial Differential Equations, 1981, 6: 883–901. DOI:10.1080/03605308108820196
[5] Li Y Y. Remark on some conformally invariant integral equations:the method of moving spheres. Journal of the European Mathematical Society, 2004, 6: 153–180.
[6] Li Y Y, Zhang L. Liouville type theorems and Harnack type inequalities for semilinear elliptic equations. Journal d'Analyse Mathématique, 2003, 90: 27–87. DOI:10.1007/BF02786551
[7] Li Y Y, Zhu M J. Uniqueness theorems through the method of moving spheres. Duke Mathematical Journal, 1995, 80: 383–417. DOI:10.1215/S0012-7094-95-08016-8
[8] Reichel W, Weth T. A prior bounds and a Liouville theorem on a half-space for higher-order elliptic Dirichlet problems. Mathematische Zeitschrift, 2009, 261: 805–827. DOI:10.1007/s00209-008-0352-3
[9] Tang S F, Dou J B. Liouville type theorems for a system of integral equations on upper half space. Acta Mathematica Sinica, 2014, 30: 261–276. DOI:10.1007/s10114-014-3071-1
[10] Fang Y Q, Chen W X. A Liouville type theorem for poly-harmonic Dirichlet problems in a half space. Advances in Mathematics, 2012, 229: 2835–2867. DOI:10.1016/j.aim.2012.01.018
[11] Dou J B, Li Y. Liouville theorem for an integral system on the upper half space. Discrete and Continuous Dynamical Systems, 2015, 35: 155–171.
[12] Dou J B, Zhu M J. Sharp Hardy-Littlewood-Sobolev inequality on the upper half space. International Mathematics Research Notices, 2015, 2015: 651–687. DOI:10.1093/imrn/rnt213
[13] Dou J B, Qu C Z. Classification of positive solutions for an elliptic systems with a higher-order fractional Laplacian. Pacific Journal of Mathematics, 2013, 261: 311–334. DOI:10.2140/pjm
[14] Dou J B. Liouville type theorems for the system of integral equations. Applied Mathematics and Computation, 2010, 217: 2586–2594. DOI:10.1016/j.amc.2010.07.071
[15] Chen W X, Li C M, Ou B. Classification of solutions for a system of integral equations. Communications in Partial Differential Equations, 2005, 30: 59–65. DOI:10.1081/PDE-200044445
[16] Hang F B. On the integral systems related to Hardy-Littlewood-Sobolev inequality. Mathematical Research Letters, 2007, 14: 373–383. DOI:10.4310/MRL.2007.v14.n3.a2
[17] Chen W X, Li C M. An integral system and the Lane-Emdem conjecture. Discrete and Continuous Dynamical Systems, 2009, 4: 1167–1184.
[18] Chen W X, Li C M, Ou B. Classification of solutions for an integral equation. Communications on Pure and Applied Mathematics, 2006, 59: 330–343. DOI:10.1002/(ISSN)1097-0312
[19] 赵金虎, 刘白羽, 徐尔. 一类完全非线性椭圆型方程组解的对称性. 数学物理学报, 2015, 35A: 312–323.
Zhao J H, Liu B Y, Xu E. The symmetry of solutions to a fully nonlinear elliptic equations. Acta Mathematica Scientia, 2015, 35A: 312–323.
[20] 胡良根. 非线性Hénon方程解的Liouville定理. 数学物理学报, 2016, 36A: 639–648.
Hu L G. Liouville type theorems of solutions for the nonlinear Hénon equations. Acta Mathematica Scientia, 2016, 36A: 639–648. DOI:10.3969/j.issn.1003-3998.2016.04.003
[21] Chen W X, Li C M. Regularity of solutions for a system of integral equations. Communications on Pure and Applied Analysis, 2005, 4: 1–8.
[22] Chen W X, Li C M. Methods on Nonlinear Elliptic Equations. New York: Springfield, 2010.
[23] Lieb E. Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities. Annals of Mathematics, 1983, 118: 349–374. DOI:10.2307/2007032
[24] Chen W X, Fang Y Q, Yang R. Liouville theorems involving the fractional Laplacian on a half space. Advances in Mathematics, 2015, 274: 167–198. DOI:10.1016/j.aim.2014.12.013
[25] Silvestre L. Regularity of the obstacle problem for a fractional power of the Laplace operator. Communications on Pure and Applied Mathematics, 2007, 60: 67–112. DOI:10.1002/(ISSN)1097-0312