数学物理学报  2016, Vol. 36 Issue (6): 1137-1144   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
袁海华
张正杰
徐国进
具有临界增长及Hardy项的半线性椭圆方程多解的存在性
袁海华1, 张正杰1, 徐国进2     
1. 华中师范大学数学与统计学学院 武汉 430079 ;
2. 湖北工程学院数学与统计学院 湖北孝感 432000
摘要:该文研究如下问题 $ \begin{equation} \left \{ \begin{array}{lll} -\triangle u + \frac{u}{\mid x \mid^2}=\mid u \mid ^{2^*-2}u + g(x), \quad &x \in {\Bbb R}^N, \\ u(x)\rightarrow0 \quad (\mid x \mid\rightarrow\infty),\quad \quad \quad \quad & u\in {\cal D}^{1,2}({\Bbb R}^N) \end{array} \right . \end{equation} $ 多解的存在性, 这里 $g(x)\geq0,g(x)\not\equiv 0$ , $g(x)\in L^{\frac{2N}{N+2}}({\Bbb R}^N).$ 证明了:存在常数 $C$ (适当小), 如果 $\parallel g\parallel_{L^{\frac{2N}{N+2}}({\Bbb R}^N)}\leq C$ , 则上述问题至少有两个解存在.
关键词半线性     Hardy项     山路引理    
Multiple Solutions for Semilinear Elliptic Equations with Critical Exponents and Hardy Potential
Yuan Haihua1, Zhang Zhengjie1, Xu Guojin2     
1. School of Mathematics and Statistics, Central China Normal University, Wuhan 430079 ;
2. School of Mathematics and Statistics, Hubei Engineering University, Hubei Xiaogan 432000
Abstract: In this paper, we consider the following problem $ \begin{equation} \left \{ \begin{array}{lll} -\triangle u + \frac{u}{\mid x \mid^2}=\mid u \mid ^{2^*-2}u + g(x), \quad &x \in {\Bbb R}^N, \\[2mm] u(x)\rightarrow0 \quad (\mid x \mid\rightarrow\infty),\quad \quad \quad \quad & u\in {\cal D}^{1,2}({\Bbb R}^N) \end{array} \right . \end{equation} $ where $g(x)\geq0,g(x)\neq0$ , 且 $g(x)\in L^{\frac{2N}{N+2}}({\Bbb R}^N).$ We can prove that there exists a constant $C$ , which is small enough, such that $\parallel g\parallel_{L^{\frac{2N}{N+2}}({\Bbb R}^N)}\leq C$ , then there are at least two solutions for the above problem.
Key words: Semi-linear     Hardy potential     Mountain pass lemma    
1 引言

本文研究如下问题

$ \begin{equation} \left \{ \begin{array}{lll} -\triangle u + \frac{u}{\mid x\mid^2}=\mid u \mid ^{2^*-2}u + g(x),&x \in {\Bbb R}^N, \\ u(x)\rightarrow0 (\mid x \mid\rightarrow\infty), &u\in {\cal D}^{1, 2}({\Bbb R}^N) \end{array} \right . \end{equation} $ (1.1)

多解的存在性, 这里$g(x)\geq0, g(x)\not\equiv 0$$g(x)\in L^{\frac{2N}{N+2}}({\Bbb R}^N).$

这类问题有较强的物理背景和理论研究价值.国内外有许多学者对这类问题开展了有意义的研究, 得到一些有趣的研究结果(参见文献[1-2, 6-7]等).这类问题的研究方法主要是应用变分原理, 带Hardy项的Sobolev不等式和嵌入定理.为了探究问题(1.1)弱解的存在性, 我们可以转化为研究与其相应变分泛函

$ \begin{equation} f(u)=\frac{1}{2}\int \Big(\mid\triangledown u\mid^2+\frac{u^2}{\mid x\mid^2}\Big){\rm d}x-\frac{1}{2^*}\int\mid u\mid^{2^*}{\rm d}x-\int g(x)u{\rm d}x \end{equation} $ (1.2)

临界点的存在性.

受文献[12]的启发, 本文考虑一定条件下泛函$f(u)$存在一个局部极小的临界点以及山路引理形式的另一个临界点, 运用Lions[10]的集中紧致原理, 证明上述两个临界点的可达性, 从而得到问题(1.1)至少有两个弱解存在性的结果, 即本文的主要结果.

定理1.1  假设$g(x)\in L^{\frac{2N}{N+2}}({\Bbb R}^N)$, $g(x)\geq0$$g(x)\not\equiv 0$, 则存在常数$C$, 当$\parallel g\parallel_{L^{\frac{2N}{N+2}}({\Bbb R}^N)}\leq C$时, 问题(1.1)至少有两个非平凡解.

2 基本引理及记号

在本文中$L^p({\Bbb R}^N)$的范数记为$\mid\cdot\mid_p$, $ {\cal D}^{1, 2}({\Bbb R}^N)$表示$C^\infty({\Bbb R}^N)$在范数$\parallel u\parallel=(\int(\mid\triangledown u\mid^2+\frac{u^2}{\mid x\mid^2}) {\rm d}x)^\frac{1}{2}$下的完备空间.为了证明我们的结果, 我们需要如下几个引理.

引理2.1(Brezis-lieb引理)  $\{u_n\}\subset L^p({\Bbb R}^N), 1\leq p < \infty$.如果$\{u_n\}$$L^p({\Bbb R}^N)$中有界, 且$u_n\rightarrow u$${\Bbb R}^N$中几乎处处成立, 则

$ \begin{equation} \lim_{n\rightarrow\infty}(\mid u_n\mid_p^p-\mid u_n-u\mid_p^p)=\mid u\mid_p^p. \end{equation} $ (2.1)

引理2.2(Ekeland变分原理)  ${X}$是一个Banach空间, $\varphi\in{\cal C}^1({X}, R)$具有下界, $v\in{X}$$\varepsilon, \delta > 0$,

$ \begin{equation} \varphi(v)\leq\inf_X\varphi+\varepsilon, \end{equation} $ (2.2)

则存在$u\in{X}$使得

$ \begin{equation} \varphi(u)\leq\inf_X\varphi+2\varepsilon, \parallel\varphi'(u)\parallel\leq\frac{8\varepsilon}{\delta}, \parallel u-v\parallel \leq2\delta. \end{equation} $ (2.3)

引理2.3  假设$\{u_n\}$${\cal D}^{1, 2}({\Bbb R}^N)$中一序列满足$ I_g(u_n)\rightarrow c < \frac{1}{N}S^{\frac{N}{2}}, I'_g(u_n)\rightarrow 0$, 那么在$\{u_n\}$中存在一个强收敛的子序列.

 由已知条件

$ \begin{equation} I_g(u_n)=\frac{1}{2}\int_{{\Bbb R}^N}(\mid\triangledown u_n\mid^2+\frac{u_n^2}{\mid x\mid^2}){\rm d}x-\frac{1}{2^*}\int_{{\Bbb R}^N}\mid u_n\mid^{2^*}{\rm d}x-\int_{{\Bbb R}^N} g(x)u_n{\rm d}x\rightarrow c, \end{equation} $ (2.4)

以及对任意$\varphi\in{\cal D}^{1, 2}({\Bbb R}^N)$, 有

$ \begin{eqnarray} \langle I'_g(u_n), \varphi\rangle &=&\int_{{\Bbb R}^N}(\triangledown u_n\triangledown \varphi+\frac{u_n \varphi}{\mid x\mid^2}){\rm d}x-\int_{{\Bbb R}^N}\mid u_n\mid^{2^*-2}u_n \varphi {\rm d}x-\int_{{\Bbb R}^N}g(x)\varphi {\rm d}x\\ &=&o(1)\parallel\varphi\parallel . \end{eqnarray} $ (2.5)

首先可得$\{u_n\}$${\cal D}^{1, 2}({\Bbb R}^N)$中有界.

反证法:若$\{u_n\}$${\cal D}^{1, 2}({\Bbb R}^N)$中无界, 则当$n\rightarrow\infty $时, $t_n=(\int_{{\Bbb R}^N}\mid\triangledown u_n\mid^2 {\rm d}x)^{\frac{1}{2}}\rightarrow\infty$.记$\omega_n=\frac{u_n}{t_n}$, 因此$(\int_{{\Bbb R}^N}\mid\triangledown \omega_n\mid^2 {\rm d}x)^{\frac{1}{2}}=1$对任意$n$成立.从而存在子列

$ \mbox{ $\omega_n\rightharpoonup\omega$ 在 ${\cal D}^{1, 2}({\Bbb R}^N)$ 中, $\omega_n\stackrel{\rm a.e.}\rightarrow\omega $ 在 ${\Bbb R}^N$ 中.} $

(2.5)式两边同时除以$t_n$, 得到

$ \begin{equation} \int_{{\Bbb R}^N} \Big(\triangledown \omega_n\triangledown \varphi+\frac{\omega_n \varphi}{\mid x\mid^2} \Big){\rm d}x-\int_{{\Bbb R}^N}\mid u_n\mid^{2^*-2}\omega_n \varphi {\rm d}x-\frac{1}{t_n}\int_{{\Bbb R}^N}g(x)\varphi {\rm d}x=o(1). \end{equation} $ (2.6)

我们知道

$ \int_{{\Bbb R}^N}\mid u_n\mid^{2^*-2}\omega_n \varphi {\rm d}x=t_n^{2^*-2}\int_{{\Bbb R}^N}\mid \omega_n\mid^{2^*-2}\omega_n \varphi {\rm d}x. $

特别地, 对任意$\varphi\in{\cal C}_0^\infty({\Bbb R}^N)$, 有

$ \int_{{\Bbb R}^N}\mid \omega_n\mid^{2^*-2}\omega_n \varphi {\rm d}x\rightarrow\int_{{\Bbb R}^N}\mid \omega\mid^{2^*-2}\omega \varphi {\rm d}x. $

(2.6)式两边同时除以$t_n^{2^*-2}$并取极限, 得到

$ \int_{{\Bbb R}^N}\mid \omega\mid^{2^*-2}\omega \varphi {\rm d}x=0. $

$\varphi$的任意性可知:在${\Bbb R}^N$$\omega\stackrel{a.e.}=0$.

在(2.4)式两边同时除以$t_n^2$

$ \begin{equation} \frac{1}{2}\int_{{\Bbb R}^N} \Big(\mid\triangledown \omega_n\mid^2+\frac{\omega_n^2}{\mid x\mid^2}\Big){\rm d}x-\frac{1}{2^*}\int_{{\Bbb R}^N}\mid u_n\mid^{2^*-2}\omega_n^2{\rm d}x-\frac{1}{t_n}\int_{{\Bbb R}^N} g(x)\omega_n{\rm d}x=o(1). \end{equation} $ (2.7)

在(2.6)式中取$\varphi=\omega_n$

$ \begin{equation} \int_{{\Bbb R}^N}\Big(\mid\triangledown \omega_n\mid^2+\frac{\omega_n^2}{\mid x\mid^2}\Big){\rm d}x-\int_{{\Bbb R}^N}\mid u_n\mid^{2^*-2}\omega_n^2{\rm d}x-\frac{1}{t_n}\int_{{\Bbb R}^N} g(x)\omega_n{\rm d}x=o(1). \end{equation} $ (2.8)

由于在${\cal D}^{1, 2}({\Bbb R}^N)$$\omega_n\rightharpoonup\omega$, 所以有

$ \int_{{\Bbb R}^N} g(x)\omega_n{\rm d}x\rightarrow 0. $

结合(2.7)和(2.8)式, 可得

$ \begin{equation} \frac{1}{2}+\frac{1}{2}\lim_{n\rightarrow\infty}\int_{{\Bbb R}^N}\frac{\omega_n^2}{\mid x\mid^2}{\rm d}x=\frac{1}{2^*}\lim_{n\rightarrow\infty}\int_{{\Bbb R}^N}\mid u_n\mid^{2^*-2}\omega_n^2{\rm d}x, \end{equation} $ (2.9)
$ \begin{equation} 1+\lim_{n\rightarrow\infty} \int_{{\Bbb R}^N}\frac{\omega_n^2}{\mid x\mid^2}{\rm d}x=\lim_{n\rightarrow\infty}\int_{{\Bbb R}^N}\mid u_n\mid^{2^*-2}\omega_n^2{\rm d}x. \end{equation} $ (2.10)

由(2.9)和(2.10)式, 可得

$ \begin{equation} \Big(\frac{2^*}{2}-1\Big)\Big(1+\lim_{n\rightarrow\infty} \int_{{\Bbb R}^N} \frac{\omega_n^2}{\mid x\mid^2}{\rm d}x\Big)=0. \end{equation} $ (2.11)

(2.11)式显然是矛盾的.因此$\{u_n\}$${\cal D}^{1, 2}({\Bbb R}^N)$中有界.

由于序列$\{u_n\}$${\cal D}^{1, 2}({\Bbb R}^N)$中有界, 因此存在$\{u_n\}$的子列(仍记为$\{u_n\}$), 满足:

a) $u_n\rightharpoonup u$, 在${\cal D}^{1, 2}({\Bbb R}^N)$中;

b) $u_n\stackrel{\rm a.e.}{\longrightarrow} u$${\Bbb R}^N$中.

运用带Hardy项的Sobolev嵌入定理可知, 序列$\{u_n\}$$L^{2^*}({\Bbb R}^N)$中有界, 所以$u_n^{2^*-1}$$L^{\frac{2N}{N+2}}({\Bbb R}^N)$中有界, 从而可知存在子列在$L^{\frac{2N}{N+2}}({\Bbb R}^N)$中弱收敛以及在${\Bbb R}^N$中几乎处处收敛.因此知在${\cal D}^{1, 2}({\Bbb R}^N)$

$ \begin{equation} u_n^{2^*-1}\rightharpoonup u^{2^*-1}. \end{equation} $ (2.12)

$I'_g(u_n)\rightarrow0$, 则对任意函数$\varphi\in{\cal D}^{1, 2}({\Bbb R}^N)$, 有

$ \begin{equation} \langle I'_g(u_n), \varphi\rangle\rightarrow 0. \end{equation} $ (2.13)

$ \begin{equation} \int_{{\Bbb R}^N}\Big(\triangledown u_n\triangledown \varphi+\frac{u_n \varphi}{\mid x\mid^2}\Big){\rm d}x-\int_{{\Bbb R}^N}\mid u_n\mid^{2^*-2}u_n \varphi {\rm d}x-\int_{{\Bbb R}^N}g(x)\varphi {\rm d}x\rightarrow 0. \end{equation} $ (2.14)

所以有

$ \begin{equation} \int_{{\Bbb R}^N}\Big(\triangledown u\triangledown \varphi+\frac{u \varphi}{\mid x\mid^2}\Big){\rm d}x-\int_{{\Bbb R}^N}\mid u \mid ^{2^*-2}u \varphi {\rm d}x-\int_{{\Bbb R}^N}g(x)\varphi {\rm d}x=0. \end{equation} $ (2.15)

即对任意的$\varphi\in{\cal D}^{1, 2}({\Bbb R}^N)$, 有下式成立

$ \langle I'_g(u), \varphi\rangle=0. $

$\varphi=u$, 则由(2.15)式有

$ \begin{equation} \int_{{\Bbb R}^N} \Big(\mid\triangledown u\mid^2+\frac{u^2}{\mid x\mid^2}\Big){\rm d}x=\int_{{\Bbb R}^N}\mid u\mid^{2^*-1}u{\rm d}x+\int_{{\Bbb R}^N} g(x)u{\rm d}x. \end{equation} $ (2.16)

所以存在适当小的常数$C$, 当$\parallel g\parallel_{L^{\frac{2N}{N+2}} ({\Bbb R}^N)}\leq C$时, 有

$ \begin{eqnarray} I_g(u) &=&\frac{1}{2}\int_{{\Bbb R}^N} \Big(\mid\triangledown u\mid^2+\frac{u^2}{\mid x\mid^2}\Big){\rm d}x-\frac{1}{2^*}\int_{{\Bbb R}^N}\mid u\mid^{2^*}{\rm d}x-\int_{{\Bbb R}^N} g(x)u{\rm d}x\\ &=&\Big (\frac{1}{2}-\frac{1}{2^*}\Big)\int_{{\Bbb R}^N}\mid u\mid^{2^*}{\rm d}x-\frac{1}{2}\int_{{\Bbb R}^N} g(x)u{\rm d}x\geq 0. \end{eqnarray} $ (2.17)

下面, 我们来证明$u_n\longrightarrow u$(在${\cal D}^{1, 2}({\Bbb R}^N)$中强收敛).

$v_n=u_n-u$, 由引理2.1得

$ \int_{{\Bbb R}^N}\mid\triangledown u_n\mid^2{\rm d}x=\int_{{\Bbb R}^N}\mid\triangledown v_n\mid^2{\rm d}x+\int_{{\Bbb R}^N}\mid\triangledown u\mid^2{\rm d}x+o(1), \\ \begin{equation} \int_{{\Bbb R}^N}\frac{u_n^2}{\mid x\mid^2}{\rm d}x=\int_{{\Bbb R}^N}\frac{v_n^2}{\mid x\mid^2}{\rm d}x+\int_{{\Bbb R}^N}\frac{u^2}{\mid x\mid^2}{\rm d}x+o(1), \end{equation}\\ \int_{{\Bbb R}^N}\mid u_n\mid^{2^*}{\rm d}x=\int_{{\Bbb R}^N}\mid v_n\mid^{2^*}{\rm d}x+\int_{{\Bbb R}^N}\mid u\mid^{2^*}{\rm d}x+o(1). $ (2.18)

由引理条件及(2.18)式知

$ \begin{eqnarray} I_g(u_n)&=&\frac{1}{2}\int_{{\Bbb R}^N} \Big(\mid\triangledown u_n\mid^2+\frac{u_n^2}{\mid x\mid^2}\Big){\rm d}x-\frac{1}{2^*}\int_{{\Bbb R}^N}\mid u_n\mid^{2^*}{\rm d}x-\int_{{\Bbb R}^N} g(x)u{\rm d}x \\ &=&I_g(u)+\frac{1}{2}\int_{{\Bbb R}^N} \Big(\mid\triangledown v_n\mid^2+\frac{v_n^2}{\mid x\mid^2}\Big){\rm d}x-\frac{1}{2^*}\int_{{\Bbb R}^N}\mid v_n\mid^{2^*}{\rm d}x+o(1). \end{eqnarray} $ (2.19)

由(2.13)式可知$\langle I'_g(u_n), u_n\rangle\rightarrow 0$, 再结合(2.18)式子可得

$ \begin{eqnarray*} \langle I'_g(u_n), u_n\rangle &=&\int_{{\Bbb R}^N} \Big(\mid\triangledown u_n\mid^2+\frac{u_n^2}{\mid x\mid^2}\Big){\rm d}x-\int_{{\Bbb R}^N}\mid u_n\mid^{2^*-1}u{\rm d}x-\int_{{\Bbb R}^N} g(x)u{\rm d}x\\ &=&\langle I'_g(u), u\rangle+\int_{{\Bbb R}^N} \Big(\mid\triangledown v_n\mid^2+\frac{v_n^2}{\mid x\mid^2}\Big){\rm d}x-\int_{{\Bbb R}^N}\mid v_n\mid^{2^*}{\rm d}x+o(1)\\ &=&\int_{{\Bbb R}^N}\Big(\mid\triangledown v_n\mid^2+\frac{v_n^2}{\mid x\mid^2}\Big){\rm d}x-\int_{{\Bbb R}^N}\mid v_n\mid^{2^*}{\rm d}x+o(1)\rightarrow 0. \end{eqnarray*} $

假设$ \int_{{\Bbb R}^N}\Big(\mid\triangledown v_n\mid^2+\frac{v_n^2}{\mid x\mid^2}\Big){\rm d}x\rightarrow b, $

$ \begin{equation} \int_{{\Bbb R}^N}\mid v_n\mid^{2^*}{\rm d}x \rightarrow b, \end{equation} $ (2.20)

以及$S$的定义

$ \begin{equation} S\Big(\int_{{\Bbb R}^N}\mid v_n\mid^{2^*}{\rm d}x\Big)^{\frac{2}{2^*}}\leq\int_{{\Bbb R}^N} \Big(\mid\triangledown v_n\mid^2+\frac{v_n^2}{\mid x\mid^2}\Big){\rm d}x =\int_{{\Bbb R}^N}\mid v_n\mid^{2^*}{\rm d}x+o(1), \end{equation} $ (2.21)

可得$b\geq S b^{\frac{2}{2^*}}.$

如果$b=0$, 则定理得证; 如果$b\neq0$, 由(2.17)及(2.19)式可得

$ \frac{1}{N}S^{\frac{N}{2}}=\Big(\frac{1}{2}-\frac{1}{2^*}\Big)S^{\frac{N}{2}} \leq\Big(\frac{1}{2}-\frac{1}{2^*}\Big)b\leq c < \frac{1}{N}S^{\frac{N}{2}}. $

上式显然是矛盾的, 所以$b=0$, 序列$\{u_n\}$${\cal D}^{1, 2}({\Bbb R}^N)$中有强收敛子列.

3 主要结果的证明

在这一部分, 我们将给出主要结果的证明.

定义3.1  定义

$ \overline{B_R}=\{u\in{\cal D}^{1, 2}({\Bbb R}^N)|\parallel u\parallel\leq R\}, I_0=\inf_{u\in\overline{B_R}}I_g(u). $

定理3.1  假设$ u\in\overline{B_R}, g(x)\in L^{\frac{2N}{N+2}}({\Bbb R}^N)$, $g(x)\geq 0, g(x)\not\equiv 0$, $\parallel g\parallel_{L^{\frac{2N}{N+2}}({\Bbb R}^N)}\leq C$, 其中$C$$R$适当小, 则存在$u_0\in\overline{B_R}, $使得$I_0=I_g(u_0)$$I'_g(u_0)=0.$$u_0$是问题(1.1)的解.

 对任意的$u\in{\cal D}^{1, 2}({\Bbb R}^N), u > 0, $

$ \begin{equation}I_g(tu)=\frac{t^2}{2}\int \Big(\mid\triangledown u\mid^2+\frac{u^2}{\mid x\mid^2}\Big){\rm d}x-\frac{t^{2^*}}{2^*}\int\mid u\mid^{2^*}{\rm d}x-t\int g(x)u{\rm d}x, \end{equation} $ (3.1)
$ \begin{equation} \frac{{\rm d}I_g(tu)}{{\rm d}t}=t \int\Big(\mid\triangledown u\mid^2+\frac{u^2}{\mid x\mid^2}\Big) -t^{2^*-1}\int\mid u\mid^{2^*}{\rm d}x-\int g(x)u{\rm d}x. \end{equation} $ (3.2)

如果$0 < t < \varepsilon$, 显然有$\frac{{\rm d}I_g(tu)}{{\rm d}t} < 0, $所以当$t\in(0, \varepsilon)$时, $I_g(tu)$是减函数.由$I_g(0)=0, \ I_g(tu)\in C^1$, 对于充分小的$R$, 当$u\in\overline{B_R}$时, 有

$ \begin{equation} I_g(u) < 0, I_0=\inf_{u\in\overline{B_R}}I_g(u) < 0. \end{equation} $ (3.3)

如果$t > \varepsilon$,

$ \begin{eqnarray*} \frac{{\rm d}I_g(tu)}{{\rm d}t}&=&t \int \Big(\mid\triangledown u\mid^2+\frac{u^2}{\mid x\mid^2}\Big)-t^{2^*-1}\int\mid u\mid^{2^*}{\rm d}x-\int g(x)u{\rm d}x\\ &=&t\parallel u\parallel^2-t^{2^*-1}\mid u\mid^{2^*}_{2^*}-\int g(x)u{\rm d}x\\ &\geq &t\parallel u\parallel^2-t^{2^*-1}\mid u\mid^{2^*}_{2^*}-\mid g\mid_\frac{2N}{N+2}\mid u\mid_{2^*}\\ &\geq &t\parallel u\parallel^2-C_1t^{2^*-1} \parallel u \parallel^{2^*}-C_2\parallel u \parallel. \end{eqnarray*} $

$\parallel u \parallel=A$, 有

$ \begin{equation} g(t)=t\parallel u\parallel^2-C_1t^{2^*-1} \parallel u \parallel^{2^*}-C_2\parallel u \parallel=A^2t-C_1A^{2^*}t^{2^*-1}-C_2A, \end{equation} $ (3.4)

$ g'(t)=A^2-C_1(2^*-1)A^{2^*}t^{2^*-2}=0$, 可得

$ \begin{equation} t_0=[C_1(2^*-1)]^{\frac{-1}{2^*-2}}A^{-1}, \end{equation} $ (3.5)
$ \begin{eqnarray*} g(t_0)&=&A^2[C_1(2^*-1)]^{\frac{-1}{2^*-2}}A^{-1}-C_1A^{2^*}[C_1(2^*-1)]^\frac{1-2^*}{2^*-2}A^{1-2^*}-C_2A\\ &=&A \Big\{[C_1(2^*-1)]^{\frac{-1}{2^*-2}}-C_1[C_1(2^*-1)]^{\frac{1-2^*}{2^*-2}}-C_2\Big\}\\ &=&A\Big \{[C_1(2^*-1)]^{\frac{-1}{2^*-2}}\Big(1-\frac{1}{2^*-1}\Big)-C_2\Big\}. \end{eqnarray*} $

$1-\frac{1}{2^*-1}>0, C_2$适当小, 我们有$g(t_0)>0.$所以当$t=t_0$时, $I(tu)$是增函数.

上述表明, 对于$u\in\overline{B_R}, u>0, $函数$I(tu)$存在局部极小值.

由引理2.2, 对于充分小的$R$, 我们可以得到$I_g(tu)$的一个$(PS)_c$序列:

$ \{u_n\}\subset{\cal D}^{1, 2}({\Bbb R}^N), I_g(u_n)\rightarrow I_0, I'_g(u_n)\rightarrow 0 $

$I_0=\inf\limits_{u\in\overline{B_R}}I_g(u) < 0 < \frac{1}{N}S^\frac{N}{2}$, 利用引理2.3可知:存在$u_0\in\overline{B_R}, $使得$I_0=I_g(u_0)$$I'_g(u_0)=0.$$u_0$是问题(1.1)的解.

定理3.2  假设$ u\in{\cal D}^{1, 2}({\Bbb R}^N)$, $ g(x)\in L^{\frac{2N}{N+2}}({\Bbb R}^N)$, $g(x)\geq0, g(x)\not\equiv 0$, $\parallel g\parallel_{L^{\frac{2N}{N+2}}({\Bbb R}^N)}\leq C$, 其中$C$适当小, 由山路引理, 问题(1.1)存在另一个解.

 令$v$$S$的极小可达函数, 其中$ S=\inf\limits_{u\in{\cal D}^{1, 2}({\Bbb R}^N)}\frac{\parallel u\parallel^2}{\mid u\mid_{2^*}^{2}}.$

$ \begin{eqnarray*} \max_{t\geq0}I_g(tv)&=&\max_{t\geq0} \Big(\frac{t^2}{2}\int \mid \triangledown v\mid^2+\frac{v^2}{\mid x\mid^2}-\frac{t^{2^*}}{2^*}\int\mid v\mid^{2^*}-t\int g(x)v \Big)\\ & < &\max_{t\geq0}\Big(\frac{t^2}{2}\int \mid \triangledown v\mid^2+\frac{v^2}{\mid x\mid^2}-\frac{t^{2^*}}{2^*}\int\mid v\mid^{2^*}\Big ). \end{eqnarray*} $

$A=\parallel v\parallel^2, B=\mid v\mid_{2^*}^{2^*}$,

$ \begin{equation} g(t)=\frac{t^2}{2}\int \mid \triangledown v\mid^2+ \frac{v^2}{\mid x\mid^2}-\frac{t^{2^*}}{2^*}\int\mid v\mid^{2^*}=\frac{t^2}{2}\parallel v\parallel^2-\frac{t^{2^*}}{2^*}\mid v\mid_{2^*}^{2^*}=\frac{t^2}{2}A-\frac{t^{2^*}}{2^*}B. \end{equation} $ (3.6)

$g'(t)=At-Bt^{2^*-1}=0, $可得

$ \begin{equation} t_0=\Big(\frac{A}{B}\Big)^{\frac{1}{2^*-2}}, \end{equation} $ (3.7)
$ \begin{eqnarray*} g(t_0)&=&\frac{1}{2}A\Big(\frac{A}{B}\Big)^{\frac{2}{2^*-2}}-\frac{B}{2^*} \Big(\frac{A}{B}\Big)^{\frac{2^*}{2^*-2}}= \Big(\frac{1}{2}-\frac{1}{2^*}\Big)A^\frac{2^*}{2^*-2}/ B^\frac{2}{2^*-2}\\ &=&\Big(\frac{1}{2}-\frac{1}{2^*}\Big)[A/B^{\frac{2}{2^*}}]^{\frac{2^*}{2^*-2}} =\frac{1}{N}\Big(\frac{\parallel v\parallel^2}{\mid v\mid_{2^*}^{2^*}}\Big)^{N/2} =\frac{1}{N}S^{N/2}, \end{eqnarray*} $

所以有

$ \begin{equation} \max_{t\geq0}I_g(tv) < \frac{1}{N}S^{N/2}. \end{equation} $ (3.8)
$ \begin{eqnarray*} I_g(u)&=&\frac{1}{2}\int \Big(\mid\triangledown u\mid^2+\frac{u^2}{\mid x\mid^2}\Big){\rm d}x-\frac{1}{2^*}\int\mid u\mid^{2^*}{\rm d}x-\int g(x)u{\rm d}x\\ &\geq&\frac{1}{2}\parallel u \parallel^2-\frac{C_1}{2^*}\parallel u \parallel^{2^*}-C_2\parallel u \parallel^{2^*}. \end{eqnarray*} $

对于适当小的$C_2$, 存在$ r > 0 $, 使得$b=\inf\limits_{\parallel u \parallel=r}I_g(u) > 0=I_g(0);$并存在$t_0 > 0, $使得$\parallel t_0v\parallel > r$$I_g(t_0v) < 0.$

定义3.2

$ c=\inf_{\gamma\in\Gamma}\max_{t\in[0, 1]}I_g(\gamma(t)), $
$ \Gamma:=\{\gamma\in{\cal C}([0, 1], {\cal D}^{1, 2}({\Bbb R}^N)); \gamma(0)=0, \gamma(1)=t_0v\}. $

由引理2.3和山路引理可知, 泛函$ I_g(u)$有一个临界值$c\in[b, c^*), $且问题

$ \begin{equation}\label{2.1} \left \{ \begin{array}{lll} triangle u + \frac{u}{\mid x\mid^2}=\mid u \mid ^{2^*-2}u + g(x),&x \in {\Bbb R}^N \setminus \{0\}, \\ [2mm] u\in {\cal D}^{1, 2}({\Bbb R}^N) \end{array} \right . \end{equation} $ (3.9)

有一个非平凡解$u$.

定理1.1的证明  首先由定理3.1证得$u_0$$B_R$中泛函$I_g(u)$的局部极小点, 再由$I_g(u_0) < \frac{1}{N}S^{N/2}$, 运用引理2.3可知$u_0$是问题(1.1)的一个弱解.然后, 由定理3.2知泛函$I_g(u)$满足山路引理的几何条件且$I_g(u) < \frac{1}{N}S^{N/2}$, 由山路引理及引理2.3可得问题(1.1)的另一个弱解.即定理1.1的结论成立.

参考文献
[1] Brezis H, Nirenberg L. Positive solutions of nonlinear elliptic equations involving critical exponents. Comm Pure Appl Math, 1983, 36: 437–447. DOI:10.1002/(ISSN)1097-0312
[2] Cao D M, Han P G. Solutions for semilinear elliptic equations with critical exponents and Hardy potential. J Differential Equations, 2004, 205: 521–537. DOI:10.1016/j.jde.2004.03.005
[3] Cao D M, Peng S J. A global compactness result for singular elliptic problems involving critical Sobolev exponent. Proc Amer Math Soc, 2003, 131: 1857–1866. DOI:10.1090/S0002-9939-02-06729-1
[4] 丁凌, 唐春雷. 具有Hardy项和Hardy-Sobolev临界指数半线性椭圆方程的多个正解. 西南大学学报(自然科学版) , 2008, 30 : 27–31.
Ding L, Tang C L. Multiple positive solutions for semilinear elliptic equations involving Hardy terms and Hardy-Sobolev critical exponents. J Southwest Univer (Natural Sci Ed), 2008, 30: 27–31.
[5] Florin C, Wang Z Q. On the Caffearelli-Kohn-Nirenberg inequalities:sharp constants, existence (and nonexistence), and symmetry of extremal functions. Commun Pure Appl Math, 2001, 54: 229–258. DOI:10.1002/(ISSN)1097-0312
[6] Kang D S. Solutins for semilinear elliptic problems with critical Sobolev Hardy exponents in RN. Nonlinear Anal, 2007, 66: 241–252. DOI:10.1016/j.na.2005.11.028
[7] Kang D S, Deng Y B. Existence of solution for a singular critical elliptic equation. J Math Anal Appl, 2003, 284: 724–732. DOI:10.1016/S0022-247X(03)00394-9
[8] Kang D S, Peng S J. Existence of solutions for elliptic with critical Sobolev Hardy exponents. Nonlinear Anal, 2004, 56: 1151–1164. DOI:10.1016/j.na.2003.11.008
[9] Kang D S, Luo J, Shi X L. Solutions to elliptic systems involving doubly critical nonlinearities and Hardy-type potentials. Acta Math Sci, 2015, 35: 423–438. DOI:10.1016/S0252-9602(15)60013-3
[10] Lions P L. The concentration-compactness principle in the calculus of variations, the limit case I. Revista Matematica Iberoamericana, 1985, 1: 145–201.
[11] Smets D. Nonlinear Schrodinger equations with Hardy potential and critical nonlinearities. Trans Amer Math Soc, 2005, 357: 2909–2938. DOI:10.1090/S0002-9947-04-03769-9
[12] 张正杰, 张莹. ℝN上拟线性椭圆型方程两个非负解的存在性. 数学物理学报 , 2015, 35A (2): 225–233.
Zhang Z J, Zhang Y. Two non-negative solutions of a quasilinear elliptic equation on ℝN. Acta Math Sci, 2015, 35A(2): 225–233.