上世纪五十年代, Lehner和Wing在文献[1]中研究了无限平行板模型中最具一般的中子迁移方程
其中$A$表示方程$(1.1)$所对应的迁移算子.之后, 迁移方程解的渐近稳定性态分析和相应迁移算子的谱分布情况已成为人们日益感兴趣的研究工作(部分见文献[2-19]).文献[2]研究了一类具各向异性、粒子单能、介质均匀带零边界条件的中子迁移方程, 采用半群等方法证明了这类迁移算子生成半群的紧性, 当初始条件$\psi_0 \in D(A^2)$时, 证明了该迁移方程解是渐近稳定的.文献[3]在$L_p(1\leq p < +\infty)$空间中研究了板模型中一类具周期和反射边界条件的各向异性、粒子单能、介质均匀的迁移方程, 证明了其相应的迁移算子产生$C_0$半群和其Dyson-Phillips展开式的二阶余项$R_2(t)$在$L_p(1 < p < +\infty)$空间紧以及在$L_1$空间弱紧, 得到了这类迁移算子的谱分析等结果.文献[4]研究了板模型中一类具周期和反射边界条件的各向异性、粒子单能、介质均匀的奇异迁移方程, 当初始条件$\psi_0 \in D(A^2)$时, 证明了该迁移方程解的渐近稳定性.至于更多奇异迁移方程解的构造性研究参阅文献[5-6].文献[7]采用豫解算子等方法研究了板模型中一类具抽象边界条件的各向异性、粒子单能、介质均匀的迁移方程, 证明了对任意的$r\in [0, 1)$, 有
在某带域一致成立, 从而得到了这类迁移算子谱的存在性等结果.之后, 豫解算子方法在迁移方程中得到广泛应用[8-13].文献[8]在$L_p(1 < p < +\infty)$空间中研究了种群细胞中一类具积分边界条件的增生扩散型迁移方程, 证明了相应迁移算子谱的存在性.文献[12]研究了种群细胞增生中一类具最大边界条件的迁移方程, 证明了这类迁移算子产生的$C_0$半群的Dyson-phillips展开式的第九阶余项的弱紧性, 得到了相应迁移算子谱的存在性等结果.受文献[12]的启发, 本文在$L_1$空间中研究了板模型中一类具抽象边界条件的各向异性、连续能量、非均匀介质的迁移方程, 采用半群理论、构造算子、比较算子和豫解算子等方法证明了这类迁移算子$A_H $产生的$C_0$半群的Dyson-phillips展开式的第九阶余项$R_9(t)$在$L_1$空间中是弱紧的, 得到了相应迁移算子的谱在区域$\Gamma_0$中仅由有限个具有限代数重数的离散本征值组成.当初始条件$\psi_0 \in D(A_H)$时, 证明了该迁移方程的解是渐近稳定的.
下面研究板几何中一类具抽象边界条件下的各向异性、连续能量、非均匀介质的迁移方程的初边值问题
其中$B_H$表示有界的带有边界算子$H$和微分项的streaming算子, $K $表示带有积分项的扰动算子, $A_H$表示方程$(1.3)$所对应的迁移算子; $x \in [-a, a], 0 < a < + \infty $; $v, v'\in E=[v_m, v_M], 0 < v_m < v_M < +\infty $, 且$v_M$和$v_m$分别表示最大和最小速率; $\mu, \mu'\in [-1, 1] $, 且$\mu$表示粒子速度与$x$轴夹角的余弦值; 函数$k(x, v, \mu, v', \mu')$和$\sigma (x, v)$分别表示散射裂变核和总碰撞率, 且它们分别表示定义在$G=[-a, a]\times E$和$ D \times D_0=([-a, a]\times E\times [-1, 1])\times (E \times [-1, 1]) $上的有界可测函数; $H$为定义在边界空间上的线性算子.
令$X=L_1(D, {\rm d}x{\rm d}v{\rm d}\mu)$表相域$D$上有界可测函数全体按范数
构成的Banach空间.
假设$O_1$:若$H$具有形式
其中$H_{12}=\alpha J_1+\beta N_1, H_{21}=\alpha J_2+\beta N_2, $ $\alpha, \beta\in R^+, J_1$和$J_2$都是紧算子, 而且
令$\sigma={\rm ess}\inf\{\sigma (x, v)\}$.对任何Re$\lambda > -\sigma$, 考虑豫解方程$(\lambda I -B_H)\psi=\varphi$, 经过计算可以得到
其中算子$P^{-}_{\lambda}, P^{+}_{\lambda}, Q^{-}_{\lambda}, Q^{+}_{\lambda}, D^{-}_{\lambda}, D^{+}_{\lambda}, E^{-}_{\lambda}, E^{+}_{\lambda}$的定义见文献[10].
假设$O_2$:扰动算子$K$在$X$上是正则算子.故可由有限秩算子逼近, 即有
从而得到
其中$\theta_i(\cdot)\in L_{\infty}([-a, a]), f_i(\cdot, \cdot)\in L_{1}(D_0), g_{i}(\cdot, \cdot)\in L_{\infty}(D_0), I$为有限集.下面构造算子$\overline{B_H}$, $\overline{P}_{\lambda}$, $\overline{Q}_{\lambda}$, $\overline{D}_{\lambda}$和$ \overline{E}_{\lambda} $
令$ P(A_H)=\sigma(A_H)\cap \Gamma_0 $为迁移算子$A_H$的谱点集, 其中
引理2.1[11] 设$B_H$是Banach空间$X$上一强连续半群的生成元, 其型为$\omega$, 若$K$是有界算子, 且存在$m\in N, \eta > \omega$, 满足
(1) 对任意的$ {\rm Re}\lambda > \eta, (\lambda I-B_H)^{-1}[K(\lambda I-B_H)^{-1}]^m $是空间$X$上弱紧算子,
(2) 在区域$ \{\lambda \in {\bf C}| {\rm Re}\lambda \geq \eta \} $上, 一致成立
则对任意的$ t > 0 $, 可得$ R_{2m+1} $是$X$上的弱紧算子.
定理2.1 若假设$O_1$和$O_2$被满足, 则对任意的$ t > 0 $, 可得$ R_{9}(t) $是空间$X$上的弱紧算子, 从而得到$ P(A_H)$仅由有限个具有限代数重数的离散本征值组成.
证 由于本定理的证明较长, 故分以下5步证明.
第1步 证明
在$ \Gamma_0$上一致地成立.事实上, 对任意的$\varphi\in X$, 有
做变换$s=\frac{x-x'}{\mu}, t=x-\mu's$, 可以得到做变换$s=\frac{x-x'}{\mu}, t=x-\mu's$, 可以得到
令$K \overline{E^{+}_{\lambda, \varepsilon}}K=A_1A_{\varepsilon}A_2$, 其中
因为$A_1$, $A_2$一致有界, 所以只需要证明
在$\Gamma_0$上一致地成立.由于对任意$\varphi \in L_1(-a, a)$, 利用H\"{o}lder不等式可以得到
所以由(2.4)-(2.5)式, 只需证明
在$\Gamma_0$一致地成立, 其中$l_{x, v, n}(\cdot)$一致收敛于$\varphi_{x, v}(\cdot)$.
下面, 对任意的$ n\in{\bf N} $, 若$x\in(-2a, 2a)$固定且$v\in E$固定, 设$(s_i)_{1\leq i\leq m}$是其支撑集上的一个划分, 并且满足对任意的$ i\in \{ 1, 2, \cdot\cdot\cdot, m-1 \}$, 当$s\in [s_i, s_{i+1})$时有$G_{x, v}(s)=G_{x, v}(s_i)$, 所以可得
从而可得
于是
其中$M=v_M -v_m$.因为
故(2.1)式获证.
第2步 证明
在$ \Gamma_0$一致地成立.显然, 对任意的$n\in N\setminus \{0\}$, $\overline{P_\lambda^+} J_1$和$\overline{P_\lambda^+} N_1$是不可交换的算子, 而且$(\overline{P_\lambda^+} H_{12})^n$具有如下形式
又由于
所以要证明(2.11)式在$ \Gamma_0$一致地成立, 即证明
同时在$ \Gamma_0$上一致成立, 其中$j=1, 2, \cdot\cdot\cdot, {2^n-1}$.事实上, 因为$J_1$是紧算子的, 所以不妨设$J_1$是秩一算子, 即
其中$f(v, \mu)$和$g(v', \mu')$都是简单可测函数, 所以(2.14)式转化为证明
在$ \Gamma_0$上一致成立.设$\varphi\in X$, 则
定义算子
显然可得
由于$ \| J_1(\overline{P_\lambda^+} L_1)^k \overline{D^{+}_{\lambda}}K \| \leq\| B_2 \| \cdot \| B_k \| \cdot\| B_1 \|, $而且算子$B_1, B_2$, 和$B_k$都有界, $B_1$和$B_2$与$\lambda$无关, 所以只需证明
在$ \Gamma_0$上一致成立.设$\varphi\in L_1((-a, a);{\rm d}x), \bar{\varphi}$, 是$\varphi$在$R$上的平凡拓展, 于是$B_k\varphi$可写为
利用Young不等式可得
所以(2.14)式在$\Gamma_0$上一致成立.下面证明(2.15)式也在$\Gamma_0$上一致成立.事实上, 由于$H_{12}=\alpha J_1+\beta N_1, J_1$是$X$上的弱紧算子, 则只需证明
在$\Gamma_0$上一致成立.由于对任意的$\varphi\in X$, 则
令$K \overline{Q_\lambda^+} N_1 (\beta \overline{P_\lambda^+} N_1) \overline{D^{+}_{\lambda}}K=E_2 E_n E_1$, 其中
因为算子$E_1, E_2$, 和$E_n$都有界, 而且$E_1$和$E_2$与$\lambda$无关, 类似于(2.20)式的证明, 同理可以得到
在$\Gamma_0$上一致成立, 即(2.15)式成立, 故(2.11)式在$\Gamma_0$上一致成立.
第3步 证明
在$\Gamma_0$上一致成立.由于
故要证明(2.26)式在$\Gamma_0$上一致成立, 即证明(2.1)式和(2.11)式以及方程
同时在$\Gamma_0$上一致成立.由于(2.28)式与(2.1)式以及(2.29)和(2.11)式具有相同的结构, 故同理可证明(2.28)和(2.29)式在$\Gamma_0$上一致成立.故(2.26)式在$\Gamma_0$上一致成立.
第4步 证明
于是由第3步可得到(2.30)式在$\Gamma_0$上一致成立.
第5步 证明对任意的$t > 0$, $R_9(t)$是$X$上的弱紧算子.事实上, 对任意的${\rm Re}\lambda > \lambda_0$, 可得$(\lambda I-B_H)^{-1}K$在$X$空间上的弱紧算子.由于$(\lambda I-B_H)^{-1}$在$\Gamma_0$上一致有界, 故$(\lambda I-B_H)^{-1}[K(\lambda I-B_H)^{-1}]^{m}$在$X$空间上是弱紧算子.令
可得
所以可得
于是由第4步知, 存在$m=4$使得
最后, 由引理2.1可得$R_9(t)$是$X$上的弱紧算子, 从而得到$P(A_H)$仅由有限个具有限代数重数的离散本征值组成.即此定理获证.
由定理2.1可设
并假设这些本证值按照实部递减排列, 从而可得
引理2.2[17] 假设$O_1$和$O_2$被满足, 则对任意的$\varepsilon > 0 $, 有
在区域$ \{\lambda \in {\bf C}| {\rm Re}\lambda \geq {\rm Re}\lambda_{n+1}+\varepsilon \} $上一致有界, 其中$P=P_1+P_2+P_3+\cdot\cdot\cdot+P_n$, $P_i$表示由$\lambda_i (1\leq i \leq n)$对应的射影算子.
定理2.2 若假设$O_1$和$O_2$被满足, 则对任意的$\varepsilon > 0, t > 0 $, 存在$M > 0$使得
其中$V_H(t)$表示由迁移算子$A_H$生成的$C_0$半群, $D_i$表示由$\lambda_i (1\leq i \leq n)$对应的幂零算子.
证 由假设$O_1$和半群理论知, $U_H(t)$是$X$上的$C_0$正半群, 而且半群的谱型为$-\sigma$, 所以对任意的$\varepsilon > 0, t > 0 $, 存在$M_1 > 0$使得
由半群生成定理知, $A_H$生成的$C_0$半群$V_H(t)$, 而且其渐近表达式为
其中$U_0(t)=U(t), $
于是由文献[15]知, 对任意的$\psi\in X, j\in {\bf N}$, 当${\rm Re}\lambda > -\lambda_0$时, 可以得到
令
则对任意的$\psi\in X, F(t)$在$ [0, +\infty)$上是强连续的, 于是可以得到
由(2.42)式可得
又因为
所以
其中$ \Xi(\lambda)=(\lambda I-B_H)^{-1}[K(\lambda I-B_H)^{-1}]^3 K(\lambda I-A_H)^{-1}(I-P)\psi. $显然
令$\Gamma_{n, \varepsilon}=\{\lambda \in {\bf C}| {\rm Re}\lambda > \beta_{n, \varepsilon}-\frac{\varepsilon}{2}\} $, 其中$\beta_{n, \varepsilon}={\rm Re}\lambda_{n+1}+\varepsilon $.由定理2.1知, 存在$ M_2 > 0$使得对充分大的$|{\rm Im}\lambda |$有
在$\Gamma_{n, \varepsilon}$上一致成立.由引理2.2知$ \| (\lambda I-A_H)^{-1}(I-P)\| $在$\Gamma_{n, \varepsilon}$上一致有界.于是由(2.49)式知, 存在$ M_3 > 0$使得对充分大的$|{\rm Im}\lambda |$有
在$\Gamma_{n, \varepsilon}$上一致成立.因为$ \Xi(\lambda) $在$\Gamma_{n, \varepsilon}$上是解析的, 所以由文献[15]知, 对任意的$ t > 0 $, 存在连续函数
其中$\tau > \max \{0, \beta_{n, \varepsilon} \}$.由(2.48)式和Laplace变换可得$F(t)(I-P)=\alpha(t)$.于是(2.52)式可化为
由Lebesgue控制收敛定理和(2.51)式可得
于是由Fubini定理得到
由(2.49)-(2.50)式可得
其中$M_4 > 0$, 由(2.56)式可得
又由(2.43)-(2.45)式和(2.58)式可得
其中$ M=\frac{M_4}{2\pi{\rm i}}+ \sup\limits_{t\geq 0 } \Big(\exp(({\rm Re}\lambda_{n+1}-\lambda_0)t) \sum\limits _{k=0}^3 M_1^{k+1} \frac{\| K\| ^k t^k}{k!} \Big), $从而此定理获证.