[1] LUSTIG M, DONOHO D L, SANTOS J M, et al. CompressedSensing MRI[J]. IEEE Signal Proc Mag, 2008, 25(2):72-82. [2] GRISWOLD M A, JAKOB P M, HEIDEMANN R M, et al. Generalized autocalibrating partially parallel acquisitions (GRAPPA)[J]. Magn Reson Med, 2002, 47(6):1202-1210. [3] PRUESSMANN K P, WEIGER M, SCHEIDEGGER M B, et al. SENSE:sensitivity encoding for fast MRI[J]. Magn Reson Med, 1999, 42(5):952-962. [4] LUSTIG M, PAULY J M. SPIRiT:iterative self-consistent parallel imaging reconstruction from arbitrary k-space[J]. Magn Reson Med, 2010, 64(2):457-471. [5] CHAI Q H, SU G Q, NIE S D. Compressive sensing low-field MRI reconstruction with dual-tree wavelet transform and wavelet tree sparsity[J]. Chinese J Magn Reson, 2018, 35(4):486-497. 柴青焕, 苏冠群, 聂生东. 双树小波变换与小波树稀疏联合的低场CS-MRI算法[J]. 波谱学杂志, 2018, 35(4):486-497. [6] LIANG D, WANG H F, CHANG Y C, et al. Sensitivity encoding reconstruction with nonlocal total variation regularization[J]. Magn Reson Med, 2011, 65(5):1384-1392. [7] LIU Q G, WANG S S, YING L, et al. Adaptive dictionary learning in sparse gradient domain for image recovery[J]. IEEE T Image Process, 2013, 22(12):4652-4663. [8] SONG Y, XIE H B, YANG G. Dictionary learning with segmentation for compressed-sensing magnetic resonance imaging[J]. Chinese J Magn Reson, 2016, 33(4):559-569. 宋阳, 谢海滨, 杨光. 用于压缩感知磁共振成像的分割字典学习算法[J]. 波谱学杂志, 2016, 33(4):559-569. [9] JASPAN O N, FLEYSHER R, LIPTON M L. Compressed sensing MRI:a review of the clinical literature[J]. Br J Radiol, 2015, 88(1056):20150487. [10] HOLLINGSWORTH K G. Reducing acquisition time in clinical MRI by data undersampling and compressed sensing reconstruction[J]. Phys Med Biol, 2015, 60(21):R297. [11] WANG S S, SU Z H, YING L, et al. Accelerating magnetic resonance imaging via deep learning[C]//IEEE:2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), 2016:514-517. [12] YANG Y, SUN J, LI H B, et al. Deep ADMM-Net for compressive sensing MRI[C]//LEE D D, SUGIYAMA M, LUXBURG U V, et al. Advances in neural information processing systems 29, 2016:10-18. [13] HAMMERNIK K, KLATZER T, KOBLER E, et al. Learning a variational network for reconstruction of accelerated MRI data[J]. Magn Reson Med, 2018, 79(6):3055-3071. [14] KNOLL F, HAMMERNIK K, KOBLER E, et al. Assessment of the generalization of learned image reconstruction and the potential for transfer learning[J]. Magn Reson Med, 2019, 81(1):116-128. [15] SCHLEMPER J, CABALLERO J, HAJNAL J V, et al. A deep cascade of convolutional neural networks for dynamic MR image reconstruction[J]. IEEE T Med Imaging, 2018, 37(2):491-503. [16] ZHU B, LIU J Z, CAULEY S F, et al. Image reconstruction by domain-transform manifold learning[J]. Nature, 2018, 555(7697):487-492. [17] HAN Y, YOO J, KIM H H, et al. Deep learning with domain adaptation for accelerated projection-reconstruction MR[J]. Magn Reson Med, 2018, 80(3):1189-1205. |