[1] |
DING H, HAROON A, WAN S, et al. Old discovery leading to new era: metabolic imaging of cancer with deuterium MRI[J]. Magnetochemistry, 2022, 9(1): 6.
doi: 10.3390/magnetochemistry9010006
|
[2] |
ZHANG Y, LOU F Y, FANG K, et al. Review of a new molecular imaging method—deuterium metabolic spectroscopy and imaging[J]. Chinese J Magn Reson, 2022, 39(3): 356-365.
|
|
张怡, 楼飞洋, 方可, 等. 分子影像新技术—氘代谢波谱及成像的综述与展望[J]. 波谱学杂志, 2022, 39(3): 356-365.
|
[3] |
YUAN J, CHAO ZOU, YE Q, et al. A review of advances in magnetic resonance deuterium metabolic imaging research[J]. Life Science Instruments, 2022, 20(1): 4-16.
|
|
袁家文, 邹超, 叶琼, 等. 磁共振氘代谢成像研究进展综述[J]. 生命科学仪器, 2022, 20(1): 4-16.
|
[4] |
UREY H C, BRICKWEDDE F G, MURPHY G M. A hydrogen isotope of mass 2 and its concentration[J]. Phys Rev, 1932, 40(1): 1-15.
|
[5] |
SUN X Y. 2H NMR study of deuterium distribution in molecule[J]. Chinese J Magn Reson, 1985, 2(2): 121-124.
|
|
孙贤育. 2H NMR研究分子中氢同位素氘分布[J]. 波谱学杂志, 1985, 2(2): 121-124.
|
[6] |
RUHM L, AVDIEVICH N, ZIEGS T, et al. Deuterium metabolic imaging in the human brain at 9.4 Tesla with high spatial and temporal resolution[J]. Neuroimage, 2021, 244: 118639.
doi: 10.1016/j.neuroimage.2021.118639
|
[7] |
VAN DE WEIJER T, SCHRAUWEN-HINDERLING V B. Application of magnetic resonance spectroscopy in metabolic research[J]. Biochim Biophys Acta Mol Basis Dis, 2019, 1865(4): 741-748.
doi: 10.1016/j.bbadis.2018.09.013
|
[8] |
SERKOVA N J, BROWN M S. Quantitative analysis in magnetic resonance spectroscopy: from metabolic profiling to in vivo biomarkers[J]. Bioanalysis, 2012, 4(3): 321-341.
doi: 10.4155/bio.11.320
|
[9] |
DE FEYTER H M, DE GRAAF R A. Deuterium metabolic imaging - Back to the future[J]. J Magn Reson, 2021, 326: 106932.
doi: 10.1016/j.jmr.2021.106932
|
[10] |
LU M, ZHU X H, ZHANG Y, et al. Quantitative assessment of brain glucose metabolic rates using in vivo deuterium magnetic resonance spectroscopy[J]. J Cereb Blood Flow Metab, 2017, 37(11): 3518-3530.
doi: 10.1177/0271678X17706444
|
[11] |
DE FEYTER H M, BEHAR K L, CORBIN Z A, et al. Deuterium metabolic imaging (DMI) for MRI-based 3D mapping of metabolism in vivo[J]. Sci Adv, 2018, 4(8): eaat7314.
doi: 10.1126/sciadv.aat7314
|
[12] |
STRAATHOF M, MEERWALDT A E, DE FEYTER H M, et al. Deuterium metabolic imaging of the healthy and diseased brain[J]. Neuroscience, 2021, 474: 94-99.
doi: 10.1016/j.neuroscience.2021.01.023
pmid: 33493618
|
[13] |
HESSE F, SOMAI V, KREIS F, et al. Monitoring tumor cell death in murine tumor models using deuterium magnetic resonance spectroscopy and spectroscopic imaging[J]. Proc Natl Acad Sci, 2021, 118(12): e2014631118.
|
[14] |
KREIS F, WRIGHT A J, HESSE F, et al. Measuring tumor glycolytic flux in vivo by using fast deuterium MRI[J]. Radiology, 2020, 294(2): 289-296.
doi: 10.1148/radiol.2019191242
|
[15] |
MAHAR R, ZENG H, GIACALONE A, et al. Deuterated water imaging of the rat brain following metabolism of [2H7]glucose[J]. Magn Reson Med, 2021, 85(6): 3049-3059.
doi: 10.1002/mrm.v85.6
|
[16] |
MARTÍNEZ-REYES I, CHANDEL N S. Mitochondrial TCA cycle metabolites control physiology and disease[J]. Nat Commun, 2020, 11(1): 102.
doi: 10.1038/s41467-019-13668-3
|
[17] |
VANDER HEIDEN M G, CANTLEY L C, THOMPSON C B. Understanding the Warburg effect: the metabolic requirements of cell proliferation[J]. Science, 2009, 324(5930): 1029-1033.
doi: 10.1126/science.1160809
pmid: 19460998
|
[18] |
SIMÕES R V, HENRIQUES R N, CARDOSO B M, et al. Glucose fluxes in glycolytic and oxidative pathways detected in vivo by deuterium magnetic resonance spectroscopy reflect proliferation in mouse glioblastoma[J]. Neuroimage Clin, 2022, 33: 102932.
doi: 10.1016/j.nicl.2021.102932
|
[19] |
DE FEYTER H M, THOMAS M A, BEHAR K L, et al. NMR visibility of deuterium-labeled liver glycogen in vivo[J]. Magn Reson Med, 2021, 86(1): 62-68.
doi: 10.1002/mrm.v86.1
|
[20] |
KAGGIE J D, KHAN A S, MATYS T, et al. Deuterium metabolic imaging and hyperpolarized13C-MRI of the normal human brain at clinical field strength reveals differential cerebral metabolism[J]. Neuroimage, 2022, 257: 119284.
doi: 10.1016/j.neuroimage.2022.119284
|
[21] |
PETERS D C, MARKOVIC S, BAO Q, et al. Improving deuterium metabolic imaging (DMI) signal-to-noise ratio by spectroscopic multi-echo bSSFP: A pancreatic cancer investigation[J]. Magn Reson Med, 2021, 86(5): 2604-2617.
doi: 10.1002/mrm.28906
pmid: 34196041
|
[22] |
VELTIEN A, VAN ASTEN J, RAVICHANDRAN N, et al. Simultaneous recording of the uptake and conversion of glucose and choline in tumors by deuterium metabolic imaging[J]. Cancers (Basel), 2021, 13(16): 4034.
doi: 10.3390/cancers13164034
|
[23] |
MAHAR R, DONABEDIAN P L, MERRITT M E. HDO production from [2H7]glucose quantitatively identifies Warburg metabolism[J]. Sci Rep, 2020, 10(1): 8885.
doi: 10.1038/s41598-020-65839-8
|
[24] |
MAHAR R, CHANG M C, MERRITT M E. Measuring NQO1 bioactivation using [2H7]glucose[J]. Cancers (Basel), 2021, 13(16): 4165.
doi: 10.3390/cancers13164165
|
[25] |
FLATT E, LANZ B, PILLOUD Y, et al. Measuring glycolytic activity with hyperpolarized [2H7, U-13C6] D-glucose in the naive mouse brain under different anesthetic conditions[J]. Metabolites, 2021, 11(7): 413.
doi: 10.3390/metabo11070413
|
[26] |
ZOU C, RUAN Y, LI H, et al. A new deuterium-labeled compound [2,3,4,6,6’-2H5]-D-glucose for deuterium magnetic resonance metabolic imaging[J]. NMR Biomed, 2022: e4890.
|
[27] |
PÉRONNET F, MIGNAULT D, DU SOUICH P, et al. Pharmacokinetic analysis of absorption, distribution and disappearance of ingested water labeled with D₂O in humans[J]. Eur J Appl Physiol, 2012, 112(6): 2213-2222.
doi: 10.1007/s00421-011-2194-7
pmid: 21997675
|