1 |
MATSUSHIMA T, BENCHEIKH F, KOMINO T, et al High performance from extraordinarily thick organic light-emitting diodes[J]. Nature, 2019, 572 (7770):502-506.
doi: 10.1038/s41586-019-1435-5
|
2 |
WU W Q, WANG X D, HAN X, et al Flexible photodetector arrays based on patterned CH3NH3PbI3−xClx perovskite film for real-time photosensing and imaging[J]. Adv Mater, 2019, 31 (3):1805913.
doi: 10.1002/adma.201805913
|
3 |
XIAO M D, HUANG F Z, HUANG W C, et al A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells[J]. Angew Chem Int Edit, 2014, 53 (37):9898-9903.
doi: 10.1002/anie.201405334
|
4 |
CHENG X H, JING L, ZHAO Y, et al Crystal orientation-dependent optoelectronic properties of MAPbCl3 single crystals[J]. J Mater Chem C, 2018, 6 (6):1579-1586.
doi: 10.1039/C7TC05156E
|
5 |
DING J, CHENG X, JING L, et al Polarization-dependent optoelectronic performances in hybrid halide perovskite MAPbX3 (X = Br, Cl) single-crystal photodetectors[J]. ACS Appl Mater Inter, 2018, 10 (1):845-850.
doi: 10.1021/acsami.7b13111
|
6 |
MACULAN G, SHEIKH A D, ABDELHADY A L, et al CH3NH3PbCl3 single crystals: inverse temperature crystallization and visible-blind UV-photodetector[J]. J Phys Chem Lett, 2015, 6 (19):3781-3786.
doi: 10.1021/acs.jpclett.5b01666
|
7 |
ADINOLFI V, OUELLETTE O, SAIDAMINOV M I, et al Fast and sensitive solution-processed visible-blind perovskite UV photodetectors[J]. Adv Mater, 2016, 28 (33):7264-7268.
doi: 10.1002/adma.201601196
|
8 |
YANG J, LIU K, CHENG Z, et al Investigation of interface effect on the performance of CH3NH3PbCl3/ZnO UV photodetectors[J]. ACS Appl Mater Inter, 2018, 10 (40):34744-34750.
doi: 10.1021/acsami.8b11722
|
9 |
MOSCONI E, AMAT A, NAZEERUDDIN M K, et al First-principles modeling of mixed halide organometal perovskites for photovoltaic applications[J]. J Phys Chem C, 2013, 117 (27):13902-13913.
doi: 10.1021/jp4048659
|
10 |
AMAT A, MOSCONI E, RONCA E, et al Cation-induced band-gap tuning in organohalide perovskites: interplay of spin-orbit coupling and octahedra tilting[J]. Nano Lett, 2014, 14 (6):3608-3616.
doi: 10.1021/nl5012992
|
11 |
POGLITSCH A, WEBER D Dynamic disorder in methylammoniumtrihalogenoplumbates (Ⅱ) observed by millimeter-wave spectroscopy[J]. J Chem Phys, 1987, 87 (11):6373-6378.
doi: 10.1063/1.453467
|
12 |
BERNARD G M, WASYLISHEN R E, RATCLIFFE C I, et al Methylammonium cation dynamics in methylammonium lead halide perovskites: a solid-state NMR perspective[J]. J Phys Chem A, 2018, 122 (6):1560-1573.
doi: 10.1021/acs.jpca.7b11558
|
13 |
LIM A R, KIM S H, JOO Y L Structural dynamics of CH3NH3+ and PbBr3− in tetragonal and cubic phases of CH3NH3PbBr3 hybrid perovskite by nuclear magnetic resonance[J]. Sci Rep, 2020, 10 (1):13140.
doi: 10.1038/s41598-020-70128-5
|
14 |
KNOP O, WASYLISHEN R E, WHITE M A, et al Alkylammonium lead halides. Part 2. CH3NH3PbX3 (X = Cl, Br, I) perovskites: cuboctahedral halide cages with isotropic cation reorientation[J]. Canadian J Chem, 1990, 68 (3):412-422.
doi: 10.1139/v90-063
|
15 |
MAALEJ A, ABID Y, KALLEL A, et al Phase transitions and crystal dynamics in the cubic perovskite CH3NH3PbCl3[J]. Solid State Commun, 1997, 103 (5):279-284.
doi: 10.1016/S0038-1098(97)00199-3
|
16 |
QIAO W C, WU J, ZHANG R, et al In situ NMR investigation of the photoresponse of perovskite crystal[J]. Matter, 2020, 3 (6):2042-2054.
doi: 10.1016/j.matt.2020.09.004
|
17 |
WASYLISHEN R E, KNOP O, MACDONALD J B Cation totation in methylammonium lead halides[J]. Solid State Commun, 1985, 56 (7):581-582.
doi: 10.1016/0038-1098(85)90959-7
|
18 |
WELLER M T, WEBER O J, HENRY P F, et al Complete structure and cation orientation in the perovskite photovoltaic methylammonium lead iodide between 100 and 352 K[J]. Chemical Commun, 2015, 51 (20):4180-4183.
doi: 10.1039/C4CC09944C
|
19 |
FRANSSEN W M J, VAN ES S G D, DERVISOGLU R, et al Symmetry, dynamics, and defects in methylammonium lead halide perovskites[J]. J Phys Chem Lett, 2017, 8 (1):61-66.
doi: 10.1021/acs.jpclett.6b02542
|
20 |
CHENG X, JING L, YUAN Y, et al Fe2+/Fe3+ doped into MAPbCl3 single crystal: impact on crystal growth and optical and photoelectronic properties[J]. J Phys Chem C, 2019, 123 (3):1669-1676.
doi: 10.1021/acs.jpcc.8b12428
|
21 |
SPIESS H W Deuteron spin alignment: a probe for studying ultraslow motions in solids and solid polymers[J]. J Chem Phys, 1980, 72 (12):6755-6762.
doi: 10.1063/1.439165
|
22 |
MACHO V, BROMBACHER L, SPIESS H W The NMR-WEBLAB: an internet approach to NMR lineshape analysis[J]. Appl Magn Reson, 2001, 20 (3):405-432.
doi: 10.1007/BF03162288
|
23 |
HENTSCHEL D, SILLESCU H, SPIESS H Molecular motion in solid polyethylene as studied by 2D wide line NMR spectroscopy[J]. Die Makromolekulare Chemie, 2003, 180, 241-249.
|
24 |
HENTSCHEL R, SPIESS H W Deuterium fourier transform NMR in solids and solid polymers[J]. J Magn Reson, 1979, 35 (1):157-162.
|
25 |
WANG J, ZHANG X, GRAF R, et al A small lattice change induces significant dynamic changes of CH3NH3+ caged in hybrid perovskite crystals: toward understanding the interplay between host lattices and guest molecules[J]. Inorg Chem, 2019, 58 (11):7426-7432.
doi: 10.1021/acs.inorgchem.9b00497
|