[1] CHIN Y H, DAGLE R, HU J, et al. Steam reforming of methanol over highly active Pd-ZnO catalyst[J]. Catal Today, 2002, 77(1):79-88. [2] RAFAEL E RODRÍGUEZ-LUGO, MÓNICA TRINCADO, VOGT M, et al. A homogeneous transition metal complex for clean hydrogen production from methanol-water mixtures[J]. Nat Chem, 2013, 5(4):342-347. [3] SHEN M, HENDERSON M A. Identification of the active species in photochemical hole scavenging reactions of methanol on TiO2[J]. J Phys Chem Lett, 2011, 2(21):2707-2710. [4] CHIARELLO G L, FERRI D, SELLI E. In situ attenuated total reflection infrared spectroscopy study of the photocatalytic steam reforming of methanol on Pt/TiO2[J]. Appl Surf Sci, 2018, 450:146-154. [5] SHEN Y B, ZHAN Y L, LI S P, et al. Methanol-water aqueous phase reforming by the assistant of dehydrogenases at near-room temperature[J]. Chemsuschem, 2018, 11(5):864-871. [6] LWIN Y, DAUD W R W, MOHAMAD A B, et al. Hydrogen production from steam-methanol reforming:thermodynamic analysis[J]. Int J Hydrogen Energ, 2000, 25(1):47-53. [7] RAMESHAN C, WEILACH C, STADLMAYR W, et al. Steam reforming of methanol on PdZn near-surface alloys on Pd(111) and Pd foil studied by in-situ XPS, LEIS and PM-IRAS[J]. J Catal, 2010, 276(1):101-113. [8] MIYAO T, YAMAUCHI M, NAITO S. Liquid phase methanol reforming with water over silica supported Pt-Ru catalysts[J]. Catal Today, 2003, 87(1-4):227-235. [9] MIYAO T, WATANABE Y, TERAMOTO M, et al. Catalytic activity of various supported Ir-Re catalysts for liquid phase methanol reforming with water[J]. Catal Commun, 2005, 6(2):113-117. [10] WANG X L, LIU W, YU Y Y, et al. Operando NMR spectroscopic analysis of proton transfer in heterogeneous photocatalytic reactions[J]. Nat Commun, 2016, 7:11918. [11] LIU J, LIU Y, LIU N Y, et al. ChemInform abstract:Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway[J]. ChemInform, 2015, 46(23):970-974. [12] HEYDUK A F, NOCERA D G. Hydrogen produced from hydrohalic acid solutions by a two-electron mixed-valence photocatalyst[J]. Science, 2001, 293(5535):1639-1641. [13] CHEN T, FENG Z C, WU G P, et al. Mechanistic studies of photocatalytic reaction of methanol for hydrogen production on Pt/TiO2 by in situ Fourier transform IR and time-resolved IR spectroscopy[J]. J Phys Chem C, 2007, 111(22):8005-8014. [14] ZHANG Z R, BONDARCHUK O, WHITE J M, et al. Imaging adsorbate O-H bond cleavage:Methanol on TiO2 (110)[J]. J Am Chem Soc, 2006, 128(13):4198-4199. [15] SCHEIBER P, RISS A, SCHMID M, et al. Observation and destruction of an elusive adsorbate with STM:O2/TiO2 (110)[J]. Phys Rev Lett, 2010, 105(21):5332-5337. [16] CHEN X B, SHEN S H, GUO L J, et al. Semiconductor-based photocatalytic hydrogen generation[J]. Chem Rev. 2010, 110(11):6503-6570. [17] SETVIN M, SHI X, HULVA J, et al. Methanol on anatase TiO2(101):Mechanistic insights into photocatalysis[J]. ACS Catal, 2017, 7(10):7081-7091. [18] LIU W J, WANG J G, GUO X J, et al. Dissociation of methanol on hydroxylated TiO2-B (100) surface:Insights from first principle DFT calculation[J]. Catal Today, 2011, 165(1):32-40. [19] MAJRIK K, ÁRPÁD TURCSÁNYI, PÁSZTI Z, et al. Graphite oxide-TiO2 nanocomposite type photocatalyst for methanol photocatalytic reforming reaction[J]. Top Catal, 2018, 61(12,13):1323-1334. [20] WANG S S, GU X K, SU H Y, et al. First-principles and microkinetic simulation studies of the structure sensitivity of Cu catalyst for methanol steam reforming[J]. J Phys Chem C, 2018, 122(20):10811-10819. [21] YANG W S, GENG Z H, GUO Q, et al. Effect of multilayer methanol and water in methanol photochemistry on TiO2[J]. J Phys Chem C, 2017, 121(32):17244-17250. [22] XU C B, YANG W S, REN Z F, et al. Strong photon energy dependence of the photocatalytic dissociation rate of methanol on TiO2(110)[J]. J Am Chem Soc. 2013, 135(50):19039-19045. [23] ZHOU C Y, REN Z F, TAN S J, et al. Site-specific photocatalytic splitting of methanol on TiO2(110)[J]. Chem Sci, 2010, 1(5):575-580. [24] YUAN Q, WU Z F, JIN Y K, et al. Photocatalytic cross-coupling of methanol and formaldehyde on a rutile TiO2(110) surface[J]. J Am Chem Soc, 2013, 135(13):5212-5219. [25] TAKEZAWA N, KOBAYASHI H, HIROSE A, et al. Steam reforming of methanol on copper-silica catalysts; effect of copper loading and calcination temperature on the reaction[J]. Appl Catal, 1982, 4(2):127-134. [26] AMIRI T Y, MOGHADDAS J. Reaction parameters influence on the catalytic performance of copper-silica aerogel in the methanol steam reforming[J]. J Fuel Chem Tech, 2016, 44(1):84-90. [27] AGRELL J, BIRGERSSON H, BOUTONNET M. Steam reforming of methanol over a Cu/ZnO/Al2O3 catalyst:a kinetic analysis and strategies for suppression of CO formation[J]. J Power Sources, 2002, 106(1-2):249-257. [28] LIU W Q, SONG Y H, WANG X L, et al. In situ NMR study of photocatalytic methanol reforming mechanism[J]. Chinese J Magn Reson, 2019, 36(3):298-308. 刘文卿, 宋艳红, 王雪璐, 等. 光催化甲醇重整机理的原位核磁共振研究[J]. 波谱学杂志, 2019, 36(3):298-308. [29] SONG Y H, LIU W Q, YAO Y F. Optimization of NMR experimental conditions for parahydrogen-induced polarization[J]. Chinese J Magn Reson, 2015, 32(3):470-480. 宋艳红, 刘文卿, 姚叶锋. 仲氢诱导极化增强的核磁共振实验条件优化[J]. 波谱学杂志, 2015, 32(3):470-480. [30] WANBAYOR R, RUANGPORNVISUTI V. Adsorption of CO, H2, N2O, NH3 and CH4 on the anatase TiO2 (001) and (101) surfaces and their competitive adsorption predicted by periodic DFT calculations[J]. Mater Chem Phys, 2010, 124(1):720-725. [31] XU C B, YANG W S, GUO Q, et al. Molecular hydrogen formation from photocatalysis of methanol on anatase-TiO2(101)[J]. J Am Chem Soc, 2014, 136(2):602-605. [32] MIYAO T, YAMAUCHI M, NARITA H, et al. Remarkable support effect for liquid phase methanol reforming with water over supported Pt-Ru catalysts[J]. Appl Catal A-Gen, 2006, 299:285-291. |