[1] Daniel R M, Dunn R V, Finney J L, et al. The role of dynamics in enzyme activity[J]. Annu Rev Biophys Biomol Struct, 2003, 32: 69-92.
[2] Dayie K T, Wagner G, Lefévre J F. Theory and practice of nuclear spin relaxation in proteins[J]. Ann Rev Phys Chem 1996, 47: 243-282.
[3] Fischer M W F, Majumdar A, Zuiderweg E R P. Protein NMR relaxation: theory, applications and outlook[J]. Progr Nucl Magn Reson Spectr, 1998, 33(4): 207-272.
[4] Ishima R, Torchia D A. Protein dynamics from NMR[J]. Nature Struc Biol, 2000, 7: 740-743.
[5] Brüschweiler R. New approaches to the dynamic interpretation and prediction of NMR relaxation data from proteins[J]. Curr Opin Struc Biol, 2003, 13(2): 175-183.
[6] Palmer A G III. NMR characterization of the dynamics of biomacromolecules[J]. Chem Rev, 2004, 104(8): 3 623-3 640.
[7] Mittermaier A, Kay L E. New tools provide new insights in NMR studies of protein dynamics[J]. Science, 2006, 312(5 771): 224-228.
[8] Larsen K L, Best R B, Depristo M A, et al. Simultaneous determination of protein structure and dynamics[J]. Nature, 2005, 433: 128-132.
[9] Otting G. NMR studies of water bound to biological molecules[J]. Progr Nucl Magn Reson Spectr, 1997, 31(2): 259-285.
[10] McGuire A M, Matsuo H, Wagner G. Internal and overall motions of the translation factor eIF4E: Cap binding and insertion in a CHAPS detergent micelle[J]. J Biomol NMR, 1998, 12(1): 73-88.
[11] Feng W Q, Tejero R, Zimmerman D E, et al. Solution NMR structure and backbone dynamics of the major Cold-Shock Protein (CspA) from escherichia coli: evidence for conformational dynamics in the single-stranded RNA-binding site[J]. Biochemistry, 1998, 37(31): 10 881-10 896.
[12] Kontaxis G, Konrat R, Krautler B, et al. Structure and intramodular dynamics of the amino-terminal LIM domain from quail Cysteine- and Glycine-rich protein CRP2[J]. Biochemistry, 1998, 37(20): 7 127-7 134.
[13] Wikstrom A, Berglund H, Hambraeus C, et al. Conformational dynamics and molecular recognition: backbone dynamics of the estrogen receptor DNA-binding domain[J]. J Mol Biol, 1999, 289(4): 963-979.
[14] Huang K, Ghose R, Flanagan J M, et al. Backbone dynamics of the N-terminal domain in E. Coli DnaJ determined by 15N- and 13CO-relaxation measurements[J]. Biochemistry, 1999, 38(32): 10 567-10 577.
[15] Duggan B M, Dyson H J, Wright P E. Inherent flexibility in a potent inhibitor of blood coagulation, recombinant nematode anticoagulant protein c2[J]. Eur J Biochem, 1999, 265(2): 539-548.
[16] Crump M P, Spyracopoulos L, Lavigne P, et al. Backbone dynamics of the human CC chemokine eotaxin: fast motions, slow motions, and implications for receptor binding[J]. Protein Sci, 1999, 8(10): 2 041-2 054.
[17] Ishima R, Louis J M, Torchia D A. Characterization of two hydrophobic methyl clusters in HIV-1 protease by NMR spin relaxation in solution[J]. J Mol Biol, 2001, 305(3): 515-521.
[18] Grey M J, Wang C Y, Palmer A G. Disulfide bond isomerization in basic pancreatic trypsin inhibitor: multisite chemical exchange quantified by CPMG relaxation dispersion and chemical shift modeling[J]. J Am Chem Soc, 2003, 125(47): 14 324-14 335.
[19] Mulder F A A, Mittermaier A, Hon B, et al. Studying excited states of proteins by NMR spectroscopy[J]. Nat Struct Biol, 2001, 8: 932-935.
[20] Watz M W, Thai V, Wildman K H, et al. Linkage between dynamics and catalysis in a thermophilic-mesophilic enzyme pair[J]. Nat Struct Mol Biol, 2004, 11: 945-949.
[21] Eisenmesser E Z, Millet O, Labeikovsky W, et al. Intrinsic dynamics of an enzyme underlies catalysis[J]. Nature, 2005, 438: 117-121.
[22] Horst R, Bertelsen E B, Fiaux J, et al. Direct NMR observation of a substrate protein bound to the chaperonin GroEL[J]. Proc Natl Acad Sci USA, 2005, 102(36): 12 748-12 753.
[23] Sprangers R, Gribun A, Hwang P M, et al. Quantitative NMR spectroscopy of supramolecular complexes: dynamic side pores in ClpP are importan for product release[J]. Proc Natl Acad Sci USA, 2005, 102(46): 16 678-16 683.
[24] Tolman J R, Flanagan J M, Kennedy M A. Prestegard. NMR evidence for slow collective motions in cyanometmyoglobin[J]. Nat Struct Biol, 1997, 4: 292-296.
[25] Clore G M, Schwieters C D. Amplitudes of protein backbone dynamics and correlated motions in a small α/β Protein: Correspondence of dipolar coupling and heteronuclear relaxation measurements[J]. Biochemistry, 2004, 43(33): 10 678-10 691.
[26] Meiler J, Prompers J J, Peti W, et al. Model-free approach to the dynamic interpretation of residual dipolar couplings in globular proteins[J]. J Am Chem Soc, 2001, 123(25): 6 098-6 107.
[27] Chou J J, Case D A, Bax A. Insights into the mobility of methyl-bearing sde chains in proteins from 3JCC and 3JCN couplings[J]. J Am Chem Soc, 2003, 125(29), 8 959-8 966.
[28] Bouvignies G, Bernadó P, Meier S, et al. Identification of slow correlated motions in proteins using residual dipolar and hydrogen-bond scalar couplings[J]. Proc Natl Acad Sci USA, 2005, 102(39): 13 885-13 890.
[29] Palmer A G III, Kroenke C D, Loria J P. Nuclear magnetic resonance methods for quantifying microsecond-to millisecond motions in biological macromolecules[J]. Methods Enzymol, 2001, 339: 204-238.
[30] Lipari G, Szabo A. Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity[J]. J Am Chem Soc, 1982, 104(17): 4 546-4 559.
[31] Lipari G, Szabo A. Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 2. Analysis of experimental results[J]. J Am Chem Soc, 1982, 104(17): 4 559-4 570.
[32] Clore G M, Szabo A, Bax A, et al. Deviations from the simple two parameter model free approach to the interpretation of 15N nuclear magnetic relaxation of proteins[J]. J Am Chem Soc, 1990, 112(12): 4 989-4 991.
[33] Tollinger M, Skrynnikov N R, Mulder F A A, et al. Slow dynamics in folded and unfolded states of an SH3 domain[J]. J Am Chem Soc, 2001, 123(46): 11 341-12 352.
[34] Korzhnev D M, Kloiber K, Kay, L E. Multiple-quantum relaxation dispersion NMR spectroscopy probing millisecond time-scale dynamics in proteins: theory and application[J]. J Am Chem Soc, 2004, 126(23): 7 320-7 329.
[35] Korzhnev D M, Neudecker P, Mittermaier A, et al. Multiple-site exchange in proteins studied with a suite of six NMR relaxation dispersion experiments: An application to the folding of a Fyn SH3 domain mutant[J]. J Am Chem. Soc, 2005, 127(44): 15 602-15 611.
[36] Mittermaier A, Korzhnev D M, Kay L E. Side-chain interactions in the folding pathway of a Fyn SH3 domain mutant studied by relaxation dispersion NMR spectroscopy[J]. Biochemistry, 2005, 44(47): 15 430-15 436.
[37] Korzhnev D M, Salvatella X, Vendruscolo M, et al. Low-populated folding intermediates of Fyn SH3 characterized by relaxation dispersion NMR[J]. Nature, 2004, 430: 586-590.
[38] Fruh D, Tolman J R, Bodenhausen G, Zwahlen C. Crosscorrelated chemical shift modulation: A signature of slow internal motions in proteins[J]. J Am Chem Soc, 2001, 123(20): 4 810-4 816.
[39] Orekhov V Y, Korzhnev D M, Kay L E. Double- and zero-quantum NMR relaxation dispersion experiments sampling millisecond time scale dynamics in proteins[J]. J Am Chem Soc, 2004, 126(6): 1 886-1 891.
[40] Fushman D, Tjandra N, Cowburn D. An approach to direct determination of protein dynamics from 15N NMR relaxation at multiple fields, independent of variable 15N chemical shift anisotropy and chemical exchange contributions[J]. J Am Chem Soc, 1999, 121(37): 8 577-8 582.
[41] Case D A, Molecular dynamics and NMR spin relaxation in proteins[J]. Acc Chem Res, 2002, 35(6): 325-331.
[42] Lippens G, Caron L, Smet C. A microscopic view of chemical exchange: monte carlo simulation of molecular association[J]. Concepts Magn Reson, 2004, 21A(1): 1-9.
[43] Mueller L J, Weitekamp D P. Quantum statistical corrections to dynamic nuclear magnetic resonance[J]. Science, 1999, 283(5 398): 61-65. |