[1] |
WU Y Y, ZHANG L J, JING W W, et al. Research progress in the application of radiomics in intracranial aneurysms[J]. Chin J Cerebrovasc Dis, 2023, 20(11): 769-776.
|
|
吴钖莹, 张丽娟, 敬维维, 等. 影像组学在颅内动脉瘤中的应用研究进展[J]. 中国脑血管病杂志, 2023, 20(11): 769-776.
|
[2] |
FORBES G, FOX A J, HUSTON J, et al. Interobserver variability in angiographic measurement and morphologic characterization of intracranial aneurysms: a report from the International Study of Unruptured Intracranial Aneurysms[J]. Am J Neuroradiol, 1996, 17(8): 1407-1415.
pmid: 8883634
|
[3] |
MORITA A, KIRINO T, HASHI K, et al. The Natural Course of Unruptured Cerebral Aneurysms in a Japanese Cohort[J]. N Engl J Med, 2012, 366(26): 2474-2482.
|
[4] |
VIAK M H M, ALGRA A, BRANDENBURG R, et al. Prevalence of unruptured intracranial aneurysms, with emphasis on sex, age, comorbidity, country, and time period: a systematic review and meta-analysis[J]. Lancet Neurol, 2011, 10(7): 626-636.
doi: 10.1016/S1474-4422(11)70109-0
pmid: 21641282
|
[5] |
ISHIBASHI T, MURAYAMA Y, URASHIMA M, et al. Unruptured intracranial aneurysms incidence of rupture and risk factors[J]. Stroke, 2009, 40(1): 313-6.
|
[6] |
GORINI S, QUIRINI M, MENCIASSI A, et al. A novel SMA-based actuator for a legged endoscopic capsule[C]// International Conference on Biomedical Robotics and Biomechatronics, 2006: 443-449.
|
[7] |
WERMER M J H, VAN DER SCHAAF I C, ALGRA A, et al. Risk of rupture of unruptured intracranial aneurysms in relation to patient and aneurysm characteristics - An updated meta-analysis[J]. Stroke, 2007, 38(4): 1404-1410.
|
[8] |
TSUKAHARA T, Murakami N, SAKURAI Y, et al. Treatment of unruptured cerebral aneurysms; a multi-center study at Japanese national hospitals[C]// New Trends of Surgery for Stroke and its Perioperative Management. Springer Vienna, 2005: 77-85.
|
[9] |
BACKES D, RINKEL G J E, Greving J P, et al. ELAPSS score for prediction of risk of growth of unruptured intracranial aneurysms[J]. JAMA Neurol, 2017, 88(17): 1600-1606.
|
[10] |
ZHANG J J, LU Y C, BAO Y F, et al. An automatic segmentation method of cerebral arterial tree in TOF-MRA based on DBCNet[J]. Chinese J Magn Reson, 2023, 40(3): 320-331.
|
|
张嘉骏, 鲁宇澄, 鲍奕仿, 等. 基于DBCNet的TOF-MRA中脑动脉树区域自动分割方法[J]. 波谱学杂志, 2023, 40(3): 320-331.
doi: 10.11938/cjmr20223046
|
[11] |
CHEN G, BAO Y F, ZHANG J J, et al. Automated unruptured cerebral aneurysms detection in TOF MR angiography images using dual-channel SE-3D UNet: a multi-center research[J]. Eur Radiol, 2023, 33(5): 3532-3543.
doi: 10.1007/s00330-022-09385-z
pmid: 36725720
|
[12] |
ASHKEZARI S F S, DETMER F J, MUT F, et al. Blebs in intracranial aneurysms: prevalence and general characteristics[J]. J Neurointerv Surg, 2021, 13(3): 226-230.
doi: 10.1136/neurintsurg-2020-016274
pmid: 32680877
|
[13] |
CHEN X, WANG X, ZhANG K, et al. Recent advances and clinical applications of deep learning in medical image analysis[J]. Med Image Anal, 2022, 79: 102444.
|
[14] |
ZHOU S K, GREENSPAN H, DAVATZIKOS C, et al. A review of deep learning in medical imaging: Imaging traits, technology trends, case studies with progress highlights, and future promises[J]. Proc IEEE Inst Electr Electron Eng, 2021, 109(5): 820-838.
|
[15] |
UEDA D, YAMAMOTO A, NISHIMORI M, et al. Deep learning for MR angiography: automated detection of cerebral aneurysms[J]. Radiology, 2019, 290(1): 187-194.
doi: 10.1148/radiol.2018180901
pmid: 30351253
|
[16] |
HE J Q, AN X W, REN H C, et al. Progresses of computer aided diagnosis in detection of intracranial aneurysms[J]. Chin J Med Imaging Technol, 2023, 39(2): 291-294.
|
|
何佳倩, 安兴伟, 任贺成, 等. 计算机辅助诊断检测颅内动脉瘤进展[J]. 中国医学影像技术, 2023, 39(2): 291-294.
|
[17] |
ZHAO Y, WANG S, REN Y, et al. CRANet: a comprehensive residual attention network for intracranial aneurysm image classification[J]. BMC Bioinform, 2022, 23(1): 322.
|
[18] |
HU Y, XU Y, HUANG X, et al. CARNet: Automatic Cerebral Aneurysm Classification in Time-of-Flight MR Angiography by Leveraging Recurrent Neural Networks[C]// First CAAI International Conference, Springer International Publishing, 2021: 136-148.
|
[19] |
CHEN M, GENG C, LI Y X, et al. Automatic detection for cerebral aneurysms in TOF-MRA images based on fuzzy label and deep learning[J]. Chinese J Magn Reson, 2022, 39(3): 267-277.
|
|
陈萌, 耿辰, 李郁欣, 等. 基于模糊标签和深度学习的TOF-MRA影像脑动脉瘤自动检测[J]. 波谱学杂志, 2022, 39(3): 267-277.
doi: 10.11938/cjmr20223004
|
[20] |
HARA K, KATAOKA H, SATOH Y. Learning spatio-temporal features with 3d residual networks for action recognition[C]// International Conference on Computer Vision Workshops. 2017: 3154-3160.
|
[21] |
YANG J, SHI R, WEI D, et al. Medmnist v2-a large-scale lightweight benchmark for 2d and 3d biomedical image classification[J]. Sci Data, 2023, 10(1): 41.
|
[22] |
HASSAN E, HOSSAIN M S, SABER A, et al. A quantum convolutional network and ResNet (50)-based classification architecture for the MNIST medical dataset[J]. Biomed Signal Process Control, 2024, 87: 105560.
|
[23] |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// Conference Vision and Pattern Recognition, 2016: 770-778.
|
[24] |
WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C]// Computer Vision-ECCV 2018, Lecture Notes in Computer Science, 2018, 11211: 3-19.
|
[25] |
JI Z, GENG J W, ZHAI X D, et al. Expert consensus on imaging interpretation of intracranial aneurysms[J]. Chin J Cerebrovasc Dis, 2021, 18(7):492-504.
|
|
吉喆, 耿介文, 翟晓东, 等. 颅内动脉瘤影像学判读专家共识[J]. 中国脑血管病杂志, 2021, 18(7): 492-504.
|
[26] |
HUANG G, LIU S, VAN DER MAATEN L, et al. Condensenet: An efficient densenet using learned group convolutions[C]// Conference Vision and Pattern Recognition, 2018: 2752-2761.
|
[27] |
SANDLER M, HOWARD A, ZHU M, et al. Mobilenetv2: Inverted residuals and linear bottlenecks[C]// Conference Vision and Pattern Recognition, 2018: 4510-4520.
|
[28] |
TAN M, LE Q. Efficientnet: Rethinking model scaling for convolutional neural networks[C]// International Conference on Machine Learning, 2019: 6105-6114.
|