波谱学杂志

• •    

基于改进的3D ResNet50模型的TOF-MRA脑动脉瘤分类方法

薛培阳1,耿辰2,李郁欣3,鲍奕仿3,鲁宇澄3#,戴亚康1,2*   

  1. 1. 徐州医科大学 医学影像学院,江苏 徐州 221004;2. 中国科学院苏州生物医学工程技术研究所,江苏 苏州 215163;3. 复旦大学附属华山医院 放射科,上海 200040
  • 收稿日期:2024-06-17 修回日期:2024-08-21 出版日期:2024-08-26 在线发表日期:2024-08-26
  • 通讯作者: 鲁宇澄;戴亚康 E-mail:359918717@qq.com;daiyk@sibet.ac.cn

A classification method for cerebral aneurysms in TOF-MRA based on improved 3D ResNet50 model

XUE Peiyang1, GENG Chen2, LI Yuxin3, BAO Yifang3, LU Yucheng3#, DAI Yakang1,2*   

  1. 1. School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, China; 2. Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China; 3. Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200040, China
  • Received:2024-06-17 Revised:2024-08-21 Published:2024-08-26 Online:2024-08-26
  • Contact: LU Yucheng;DAI Yakang E-mail:359918717@qq.com;daiyk@sibet.ac.cn

摘要: 脑动脉瘤的不规则形态,尤其是子瘤的存在,是动脉瘤破裂风险的关键因素.临床上对子瘤的评估主要是通过时间飞跃法磁共振血管造影(Time of Flight-Magnetic Resonance Angiography,TOF-MRA)进行图像重建及基于医生视觉和经验的判断,这限制了诊断的效率和准确性.本文提出了一种基于3D ResNet50改进的并行多尺度注意力融合网络(Parallel Multiscale Attention Fusion Networks,PMAF-Net)的子瘤自动分类方法,PMAF模块采用多尺度卷积并加权融合通道和空间注意力权重以提高特征提取能力.实验所用TOF-MRA数据291例,其中训练集128例,验证集32例,测试集131例.与其他分类网络比较,PMAF-Net在测试集上表现最好,准确率为83.97%,召回率为84.48%,精确率为80.33%,F1分数为0.823 5,受试者工作特征曲线(ROC)也显示出模型最佳的分类性能(AUC为0.900 8).实验结果表明该网络能更准确地识别出子瘤型动脉瘤,有望对动脉瘤破裂风险评估和量化提供支持.

关键词: 时间飞跃法磁共振血管造影, 脑动脉瘤子瘤, 多尺度卷积注意力, 自动分类, 深度学习

Abstract: The irregular morphology of cerebral aneurysms, especially the presence of a daughter sac, is a crucial risk factor of aneurysm rupture. Clinical assessment of daughter sac relies mainly on image reconstruction by TOF-MRA and judgment based on physicians' vision and experience, which limits the efficiency and accuracy of diagnosis. In this paper, we propose an improved Parallel Multiscale Fusion Attention (PMAF) network based on 3D ResNet50 for classification. PMAF uses multi-scale convolution and weighted fusion channel and spatial attention weights to enhance the feature extraction capability. The experiment used 291 cases of TOF-MRA data, including 128 cases in the training set, 32 cases in the validation set, and 131 cases in the test set. Compared with other classification networks, PMAF-Net performs best on the test set, with the accuracy of 83.97%, recall of 84.48%, precision of 80.33%, and F1-score of 0.823 5, and the Receiver Operating Characteristic Curve (ROC) also reflects the model's optimal classification performance (AUC of 0.900 8). The results show that the network can identify daughter sac type aneurysms more accurately, which is expected to support the assessment and quantification of the risk of aneurysm rupture.

Key words: TOF-MRA, daughter sac of cerebral aneurysms, multiscale convolution attention, automatic classification, deep learning

中图分类号: