[1] |
LUSTIG M, DONOHO D, PAULY J M. Sparse MRI: The application of compressed sensing for rapid MR imaging[J]. Magn Reson Med, 2007, 58(6): 1182-1195.
doi: 10.1002/mrm.21391
pmid: 17969013
|
[2] |
SONG Y, SHEN L, XING L, et al. Solving inverse problems in medical imaging with score-based generative models[J]. arXiv preprint, arXiv: 2111.08005, 2021.
|
[3] |
GENG C H, JIANG M F, FANG X, et al. HFIST-Net: High-throughput fast iterative shrinkage thresholding network for accelerating MR image reconstruction[J]. Comput Meth Prog Bio, 2023, 232: 107440.
|
[4] |
PAL A, RATHI Y. A review and experimental evaluation of deep learning methods for MRI reconstruction[J]. J Mach Learn Biomed Imaging, 2022, 1: 001.
|
[5] |
WANG S, SU Z, YING L, et al. Accelerating magnetic resonance imaging via deep learning[C]// 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), Prague, Czech Republic: IEEE, 2016: 514-517.
|
[6] |
JIN K H, MCCANN M T, FROUSTEY E, et al. Deep convolutional neural network for inverse problems in imaging[J]. IEEE Trans Image Process, 2017, 26(9): 4509-4522.
|
[7] |
ELIZABETH C, JOSEPH C, JOHN P, et al. Analysis of deep complex-valued convolutional neural networks for MRI reconstruction and phase-focused applications[J]. Magn Reson Med, 2021, 86(2):1093-1109.
doi: 10.1002/mrm.28733
pmid: 33724507
|
[8] |
ZHAO X, YANG T, LI B, et al. SwinGAN: A dual-domain swin transformer-based generative adversarial network for MRI reconstruction[J]. Comput Biol Med, 2023, 153: 106513.
|
[9] |
LI Y J, YANG X Y, YANG X M. Magnetic resonance image reconstruction of multi-scale residual Unet fused with attention mechanism[J]. Chinese J Magn Reson, 2023, 40(3): 307-319.
|
|
李奕洁, 杨馨雨, 杨晓梅. 融合注意力机制的多尺度残差Unet的磁共振图像重建[J]. 波谱学杂志, 2023, 40(3): 307-319.
doi: 10.11938/cjmr20223040
|
[10] |
SHI W C, JIN Z Y, YE Z. Fast multi-channel magnetic resonance imaging based on PCAU-Net[J]. Chinese J Magn Reson, 2023, 40(1): 39-51.
|
|
施伟成, 金朝阳, 叶铮. 基于PCAU-Net的快速多通道磁共振成像方法[J]. 波谱学杂志, 2023, 40(1): 39-51.
doi: 10.11938/cjmr20222992
|
[11] |
YANG Y, SUN J, LI H B, et al. Deep ADMM-Net for compressive sensing MRI[C]// Advances in neural information processing systems, Barcelona, Spain, 2016: 10-18.
|
[12] |
HAMMERNIK K, KLATZER T, KOBLER E, et al. Learning a variational network for reconstruction of accelerated MRI data[J]. Magn Reson Med, 2018, 79(6): 3055-3071.
doi: 10.1002/mrm.26977
pmid: 29115689
|
[13] |
SRIRAM A, ZBONTAR J, MURRELL T, et al. End-to-end variational networks for accelerated MRI reconstruction[J]. arXiv preprint, arxiv: 2004.06688, 2020.
|
[14] |
CHEN E Z, WANG P, CHEN X, et al. Pyramid convolutional RNN for MRI image reconstruction[J]. IEEE Trans Med Imag, 2022, 41(8): 2033-2047.
|
[15] |
QIAO X, HUANG Y, LI W. MEDL-Net: A model-based neural network for MRI reconstruction with enhanced deep learned regularizers[J]. Magn Reson Med, 2023, 89(5): 2062-2075.
|
[16] |
BECK A, TEBOULLE M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems[J]. SIAM J Imaging Sci, 2009, 2(1): 183-202.
|
[17] |
ZHANG J, GHANEM B. ISTA-Net: Interpretable optimization-inspired deep network for image compressive sensing[C]// IEEE conference on computer vision and pattern recognition, Salt Lake City, USA: IEEE, 2018: 1828-1837.
|
[18] |
YOU D, XIE J, ZHANG J. ISTA-NET++: Flexible deep unfolding network for compressive sensing[C]// IEEE International Conference on Multimedia and Expo, Shenzhen, China: IEEE, 2021: 1-6.
|
[19] |
DUAN J, SCHLEMPER J, QIN C, et al. VS-Net: variable splitting network for accelerated parallel MRI reconstruction[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention, Shenzhen, China: Springer, 2019: 713-722.
|
[20] |
YE J C. Compressed sensing MRI: A review from signal processing perspective[J]. BMC Biomedical Engineering, 2019, 1(1): 1-17.
|
[21] |
ARGHYA P, YOGESH R. A review and experimental evaluation of deep learning methods for MRI reconstruction[J]. J Mach Learn Biomed Imaging, 2022, 3: 1-55.
|
[22] |
CHEN Q, SHAH N J, WORTHOFF W A. Compressed sensing in sodium magnetic resonance imaging: techniques, applications, and future prospects[J]. J Magn Reson Imaging, 2022, 55(5): 1340-1356.
|
[23] |
JURE Z, FLORIAN K, ANUROOP S, et al. FastMRI: an open dataset and benchmarks for accelerated MRI[J]. arXiv preprint, arXiv: 1811.08839, 2019.
|
[24] |
PENG L, MARK J, MICHAEL L, et al. ESPIRiT-an eigenvalue approach to autocalibrating parallel MRI: where SENSE meets GRAPPA[J]. Magn Reson Med, 2014, 71(3): 990-1001.
|
[25] |
HONG G, WEI Y, MORLEY W, et al. Dual-domain accelerated MRI reconstruction using transformers with learning-based undersampling[J]. Comput Med Imag Graph, 2023, 106: 102206.
|