[1] |
EMSLEY J W, FEENEY J. Forty years of progress in nuclear magnetic resonance spectroscopy[J]. Prog Nucl Magn Reson Spectrosc, 2007, 50(4): 179-198.
|
[2] |
ZAESSKIY S S, DANIELI E, BLÜMICH B, et al. Miniaturization of NMR systems: Desktop spectrometers, microcoil spectroscopy, and ‘NMR on a chip’ for chemistry, biochemistry, and industry[J]. Chem Rev, 2014, 144(11): 5641-5694.
|
[3] |
ZHANG X Y, YAO S Q, XU J C, et al. Magnetic field locking system based on fluxgate and time domain digital frequency discrimination[J]. Chinese J Magn Reson, 2022, 39(4): 448-458.
|
|
张啸阳, 姚守权, 徐俊成, 等. 基于磁通门和时域数字鉴频的磁场锁定系统[J]. 波谱学杂志, 2022, 39(04): 448-458.
|
[4] |
SHI G H, XIAO L Z, LIAO G Z, et al. A new method and circuit of ringing suppression for low-field NMR instruments[J]. Chinese J Magn Reson, 2023, 40(1): 68-78.
|
|
师光辉, 肖立志, 廖广志, 等. 低场核磁共振仪器振铃抑制新方法及其电路实现[J]. 波谱学杂志, 2023, 40(1): 68-78.
doi: 10.11938/cjmr20223002
|
[5] |
GLOVERG P, MANSFIELD P. Limits to magnetic resonance microscopy[J]. Rep Prog Phys, 2002, 65(10): 1489-1511.
|
[6] |
DENG D Y, LI C H. Exploration of the application of NMR technique in experimental teaching for undergraduates[J]. Res Explor Lab, 2021, 40(3):186-189.
|
|
邓冬艳, 李成辉. 核磁共振技术应用于本科实验教学的探究[J]. 实验室研究与探索, 2021, 40(3): 186-189.
|
[7] |
AI H, GAO P F, LI X F. Application of nuclear magnetic resonance spectroscopy in open experiment teaching[J]. Res Explor Lab, 2022, 41(9): 186-189.
|
|
艾惠, 高培峰, 李晓芳. 核磁共振波谱仪在开放实验教学中的应用[J]. 实验室研究与探索, 2022, 41(9): 186-189.
|
[8] |
HALBACH K. Design of permanent multipole magnets with oriented rare earth cobalt materials[J]. Nucl Instrum and Methods, 1980, 169(1): 1-10.
|
[9] |
WU Z X, LU R S, JIANG X W, et al. An NMR relaxation method of characterizing hydrogen-bearing crystalline solid phases in hydrated cement paste[J]. IEEE Trans Instrum Meas, 2022, 71: 1-9.
|
[10] |
TUREK K, LISZKOWSKI P. Magnetic field homogeneity perturbations in finite Halbach dipole magnets[J]. J Magn Reson, 2017, 238: 52-56.
|
[11] |
WANG J N, JIANG X W, HU Z, et al. Design and shimming method of low length-to-interdiameter ratio Halbach magnet[J]. IEEE Trans Instrum Meas, 2022, 71: 1-10.
|
[12] |
CHEN S S, XIA T, MIAO Z Y, et al. Active shimming method for a 21.3 MHz small-animal MRI magnet[J]. Meas Sci Technol, 2017, 28(5): 055902.
|
[13] |
李想. 高均匀度核磁共振Halbach磁体研究[D]. 重庆大学, 2019.
|
[14] |
LI H Z, WU Y B, SUN W D, et al. Design and implementation of low-field NMR main magnet based on Halbach structure[J]. Chinese J Sci Instrum, 2022, 43(5): 46-56.
|
|
励洪泽, 邬杨波, 孙伟达, 等. 基于Halbach结构的低场核磁共振主磁体的设计与实现[J]. 仪器仪表学报, 2022, 43(5): 46-56.
|
[15] |
WANG Y, XU Y J, WANG F, et al. A passive shimming method for Halbach magnet based on magnetic sheet arrays[J]. J Magn Reson, 2022, 339: 107210.
|
[16] |
PARKER A J, ZIA W, REHORN C W G, et al. Shimming Halbach magnets utilizing genetic algorithms to profit from material imperfections[J]. J Magn Reson, 2016, 265: 83-89.
doi: 10.1016/j.jmr.2016.01.014
pmid: 26874333
|
[17] |
TEWARI S, O’REILLY T, WEBB A. Improving the field homogeneity of fixed-and variable-diameter discrete Halbach magnet arrays for MRI via optimization of the angular magnetization distribution[J]. J Magn Reson, 2021, 324: 106923.
|
[18] |
DANIELI E, PERLO J, BLÜMICH B, et al. Small magnets for portable NMR spectrometers[J]. Angew Chem Int Ed, 2010, 49(24): 4133-4135.
doi: 10.1002/anie.201000221
pmid: 20446281
|
[19] |
CHEN J Z, XU C Y. Design and analysis of the novel test tube magnet as a device for portable nuclear magnetic resonance[J]. IEEE Trans Magn, 2007, 43(9): 3555-3557.
|
[20] |
程艺苑. 小型永磁磁共振磁体的仿真设计与优化[D]. 浙江大学, 2015.
|
[21] |
李俊洲. 便携式核磁共振主磁体系统及射频线圈的结构设计[D]. 东北电力大学, 2023.
|