波谱学杂志 ›› 2021, Vol. 38 ›› Issue (4): 433-447.doi: 10.11938/cjmr20212938
收稿日期:
2021-07-21
出版日期:
2021-12-05
发布日期:
2021-09-14
通讯作者:
徐舒涛
E-mail:xushutao@dicp.ac.cn
基金资助:
Shu-shu GAO1,2,Shu-tao XU1,*(),Ying-xu WEI1,Zhong-min LIU1
Received:
2021-07-21
Online:
2021-12-05
Published:
2021-09-14
Contact:
Shu-tao XU
E-mail:xushutao@dicp.ac.cn
摘要:
甲醇制烯烃过程是由非石油路线生成低碳烯烃的重要途径之一.分子筛因具备独特的孔结构和可调变的酸性质,而成为甲醇制烯烃过程的核心催化剂.固体核磁共振(NMR)是鉴定物质结构、阐释催化反应机理的强有力的工具,在甲醇制烯烃的研究中被广泛应用.本文主要总结了近年来利用原位固体NMR、多维多核NMR、脉冲梯度场NMR等固体NMR技术研究甲醇制烯烃反应机理取得的重要进展.原位固体NMR可以在真实反应条件下监测催化反应中反应物、中间体和产物的动态演变过程;多维多核NMR可以在不破坏催化剂结构情况下确定反应中间体结构信息,特别是129Xe NMR可以很灵敏探测反应中催化剂的孔道结构变化;脉冲梯度场NMR可用于测定孔道内分子的扩散系数,阐明分子筛的扩散机制.
中图分类号:
高树树,徐舒涛,魏迎旭,刘中民. 固体核磁共振技术在甲醇制烯烃反应中的应用[J]. 波谱学杂志, 2021, 38(4): 433-447.
Shu-shu GAO,Shu-tao XU,Ying-xu WEI,Zhong-min LIU. Applications of Solid-State Nuclear Magnetic Resonance Spectroscopy in Methanol-to-Olefins Reaction[J]. Chinese Journal of Magnetic Resonance, 2021, 38(4): 433-447.
1 |
CHANG C D , SILVESTRI A J . The conversion of methanol and other O-compounds to hydrocarbons over zeolite catalysts[J]. J Catal, 1977, 47 (2): 249- 259.
doi: 10.1016/0021-9517(77)90172-5 |
2 |
TIAN P , WEI Y X , YE M , et al. Methanol to olefins (MTO): From fundamentals to commercialization[J]. ACS Catal, 2015, 5 (3): 1922- 1938.
doi: 10.1021/acscatal.5b00007 |
3 |
DUSSELIER M , DAVIS M E . Small-pore zeolites: Synthesis and catalysis[J]. Chem Rev, 2018, 118 (11): 5265- 5329.
doi: 10.1021/acs.chemrev.7b00738 |
4 |
MOLINER M , MARTíNEZ C , CORMA A . Synthesis strategies for preparing useful small pore zeolites and zeotypes for gas separations and catalysis[J]. Chem Mater, 2014, 26 (1): 246- 258.
doi: 10.1021/cm4015095 |
5 |
XU S T , ZHENG A M , WEI Y X , et al. Direct observation of cyclic carbenium ions and their role in the catalytic cycle of the methanol-to-olefin reaction over chabazite zeolites[J]. Angew Chem Int Ed, 2013, 52 (44): 11564- 11568.
doi: 10.1002/anie.201303586 |
6 |
XU J , WANG Q , DENG F . Metal active sites and their catalytic functions in zeolites: Insights from solid-state NMR spectroscopy[J]. Acc Chem Res, 2019, 52 (8): 2179- 2189.
doi: 10.1021/acs.accounts.9b00125 |
7 |
ZHANG W P , XU S T , HAN X W , et al. In situ solid-state NMR for heterogeneous catalysis: a joint experimental and theoretical approach[J]. Chem Soc Rev, 2012, 41 (1): 192- 210.
doi: 10.1039/C1CS15009J |
8 |
YI X F , LIU K Y , CHEN W , et al. Origin and structural characteristics of tri-coordinated extra-framework aluminum species in dealuminated zeolites[J]. J Am Chem Soc, 2018, 140 (34): 10764- 10774.
doi: 10.1021/jacs.8b04819 |
9 | LIN Z Y , HUO H , WANG Q H , et al. Progress in solid-state NMR studies of monoclinic lithium vanadium phosphate[J]. Chinese J Magn Reson, 2020, 37 (1): 16- 27. |
林泽羽, 霍华, 王启航, 等. 固体核磁共振研究单斜磷酸钒锂的进展[J]. 波谱学杂志, 2020, 37 (1): 16- 27. | |
10 | GAO X Z , ZHANG Y , WANG X M , et al. Structure and acidity changes in ultra-stable Y zeolites during hydrothermal aging: A solid-state NMR spectroscopy study NMR[J]. Chinese J Magn Reson, 2020, 37 (1): 95- 103. |
高秀枝, 张翊, 王秀梅, 等. 研究超稳Y分子筛水热老化过程中结构与酸性的变化[J]. 波谱学杂志, 2020, 37 (1): 95- 103. | |
11 |
CHEN N Y , REAGAN W J . Evidence of autocatalysis in methanol to hydrocarbon reactions over zeolite catalysts[J]. J Catal, 1979, 59 (1): 123- 129.
doi: 10.1016/S0021-9517(79)80050-0 |
12 |
ONO Y , MORI T . Mechanism of methanol conversion into hydrocarbons over ZSM-5 zeolite[J]. J Chem Soc, Faraday Transactions 1, 1981, 77 (9): 2209- 2221.
doi: 10.1039/f19817702209 |
13 |
DAHL I M , KOLBOE S . On the reaction mechanism for hydrocarbon formation from methanol over SAPO-34:2. Isotopic labeling studies of the co-reaction of propene and methanol[J]. J Catal, 1996, 161 (1): 304- 309.
doi: 10.1006/jcat.1996.0188 |
14 |
MOLE T , WHITESIDE J A , SEDDON D . Aromatic co-catalysis of methanol conversion over zeolite catalysts[J]. J Catal, 1983, 82 (2): 261- 266.
doi: 10.1016/0021-9517(83)90192-6 |
15 |
GUISNET M , COSTA L , RIBEIRO F R . Prevention of zeolite deactivation by coking[J]. J Mol Catal A: Chem, 2009, 305 (1-2): 69- 83.
doi: 10.1016/j.molcata.2008.11.012 |
16 |
OLSBYE U , SVELLE S , BJØRGEN M , et al. Conversion of methanol to hydrocarbons: how zeolite cavity and pore size controls product selectivity[J]. Angew Chem Int Ed, 2012, 51 (24): 5810- 5831.
doi: 10.1002/anie.201103657 |
17 |
STÖCKER M . Methanol-to-hydrocarbons: catalytic materials and their behavior[J]. Micropor Mesopor Mat, 1999, 29 (1-2): 3- 48.
doi: 10.1016/S1387-1811(98)00319-9 |
18 |
MARCUS D M , MCLACHLAN K A , WILDMAN M A , et al. Experimental evidence from H/D exchange studies for the failure of direct C-C coupling mechanisms in the methanol-to-olefin process catalyzed by HSAPO-34[J]. Angew Chem, 2006, 118 (19): 3205- 3208.
doi: 10.1002/ange.200504372 |
19 |
LESTHAEGHE D , VAN SPEYBROECK V , MARIN G B , et al. Understanding the failure of direct C-C Coupling in the zeolite-catalyzed methanol-to-olefin process[J]. Angew Chem, 2006, 118 (11): 1746- 1751.
doi: 10.1002/ange.200503824 |
20 |
DESSAU R M , LAPIERRE R B . On the mechanism of methanol conversion to hydrocarbons over HZSM-5[J]. J Catal, 1982, 78 (1): 136- 141.
doi: 10.1016/0021-9517(82)90292-5 |
21 |
DAHL I M , KOLBOE S . On the reaction mechanism for hydrocarbon formation from methanol over SAPO-34:I. Isotopic labeling studies of the co-reaction of ethene and methanol[J]. J Catal, 1994, 149 (2): 458- 464.
doi: 10.1006/jcat.1994.1312 |
22 |
WANG C , YI X F , XU J , et al. Experimental evidence on the formation of ethene through carbocations in methanol conversion over H-ZSM-5 zeolite[J]. Chem A Eur J, 2015, 21 (34): 12061- 12068.
doi: 10.1002/chem.201501355 |
23 | ROJO-GAMA D , SIGNORILE M , BONINO F , et al. Structure-deactivation relationships in zeolites during the methanol-to-hydrocarbons reaction: Complementary assessments of the coke content[J]. J Catal, 2017, 35133-48. |
24 |
MORES D , STAVITSKI E , KOX M H F , et al. Space- and time-resolved in-situ spectroscopy on the coke formation in molecular sieves: methanol-to-olefin conversion over H-ZSM-5 and H-SAPO-34[J]. Chem A Eur J, 2008, 14 (36): 11320- 11327.
doi: 10.1002/chem.200801293 |
25 |
GAO S S , XU S T , WEI Y X , et al. Insight into the deactivation mode of methanol-to-olefins conversion over SAPO-34:Coke, diffusion, and acidic site accessibility[J]. J Catal, 2018, 367, 306- 314.
doi: 10.1016/j.jcat.2018.09.010 |
26 |
WU X Q , CHEN W , XU S T , et al. Dynamic activation of C1 molecules evoked by zeolite catalysis[J]. ACS Cent Sci, 2021, 7 (4): 681- 687.
doi: 10.1021/acscentsci.1c00005 |
27 |
WANG S , CHEN Y Y , QIN Z F , et al. Origin and evolution of the initial hydrocarbon pool intermediates in the transition period for the conversion of methanol to olefins over H-ZSM-5 zeolite[J]. J Catal, 2019, 369, 382- 395.
doi: 10.1016/j.jcat.2018.11.018 |
28 |
WU X Q , XU S T , WEI Y X , et al. Evolution of C-C bond formation in the methanol-to-olefins process: From direct coupling to autocatalysis[J]. ACS Catal, 2018, 8 (8): 7356- 7361.
doi: 10.1021/acscatal.8b02385 |
29 |
CHOWDHURY A D , HOUBEN K , WHITING G T , et al. Initial carbon-carbon bond formation during the early stages of the methanol-to-olefin process proven by zeolite-trapped acetate and methyl acetate[J]. Angew Chem Int Ed, 2016, 55 (51): 15840- 15845.
doi: 10.1002/anie.201608643 |
30 |
LIU Y , MÜLLER S , BERGER D , et al. Formation mechanism of the first carbon-carbon bond and the first olefin in the methanol conversion into hydrocarbons[J]. Angew Chem Int Ed, 2016, 55 (19): 5723- 5726.
doi: 10.1002/anie.201511678 |
31 |
WANG W , BUCHHOLZ A , SEILER M , et al. Evidence for an initiation of the methanol-to-olefin process by reactive surface methoxy groups on acidic zeolite catalysts[J]. J Am Chem Soc, 2003, 125 (49): 15260- 15267.
doi: 10.1021/ja0304244 |
32 |
WANG W , HUNGER M . Reactivity of surface alkoxy species on acidic zeolite catalysts[J]. Acc Chem Res, 2008, 41 (8): 895- 904.
doi: 10.1021/ar700210f |
33 |
JIANG Y J , HUNGER M , WANG W . On the reactivity of surface methoxy species in acidic zeolites[J]. J Am Chem Soc, 2006, 128 (35): 11679- 11692.
doi: 10.1021/ja061018y |
34 |
JIANG Y J , WANG W , REDDY MARTHALA V R , et al. Effect of organic impurities on the hydrocarbon formation via the decomposition of surface methoxy groups on acidic zeolite catalysts[J]. J Catal, 2006, 238 (1): 21- 27.
doi: 10.1016/j.jcat.2005.11.029 |
35 |
LI J F , WEI Z H , CHEN Y Y , et al. A route to form initial hydrocarbon pool species in methanol conversion to olefins over zeolites[J]. J Catal, 2014, 317, 277- 283.
doi: 10.1016/j.jcat.2014.05.015 |
36 |
WANG C , CHU Y Y , XU J , et al. Extra-framework aluminum-assisted initial C-C bond formation in methanol-to-olefins conversion on zeolite H-ZSM-5[J]. Angew Chem Int Ed, 2018, 57 (32): 10197- 10201.
doi: 10.1002/anie.201805609 |
37 |
YANG L , YAN T T , WANG C M , et al. Role of acetaldehyde in the roadmap from initial carbon-carbon bonds to hydrocarbons during methanol conversion[J]. ACS Catal, 2019, 9 (7): 6491- 6501.
doi: 10.1021/acscatal.9b00641 |
38 |
WU X Q , XU S T , ZHANG W N , et al. Direct mechanism of the first carbon-carbon bond formation in the methanol-to-hydrocarbons process[J]. Angew Chem Int Ed, 2017, 56 (31): 9039- 9043.
doi: 10.1002/anie.201703902 |
39 |
SUN T T , CHEN W , XU S T , et al. The first carbon-carbon bond formation mechanism in methanol-to-hydrocarbons process over chabazite zeolite[J]. Chem, 2021, 7 (9): 2415- 2428.
doi: 10.1016/j.chempr.2021.05.023 |
40 |
YARULINA I , CHOWDHURY A D , MEIRER F , et al. Recent trends and fundamental insights in the methanol-to-hydrocarbons process[J]. Nat Catal, 2018, 1 (6): 398- 411.
doi: 10.1038/s41929-018-0078-5 |
41 |
HAW J F , SONG W G , MARCUS D M , et al. The mechanism of methanol to hydrocarbon catalysis[J]. Acc Chem Res, 2003, 36 (5): 317- 326.
doi: 10.1021/ar020006o |
42 |
ILIAS S , BHAN A . Mechanism of the catalytic conversion of methanol to hydrocarbons[J]. ACS Catal, 2013, 3 (1): 18- 31.
doi: 10.1021/cs3006583 |
43 |
BJØRGEN M , SVELLE S , JOENSEN F , et al. Conversion of methanol to hydrocarbons over zeolite H-ZSM-5:On the origin of the olefinic species[J]. J Catal, 2007, 249 (2): 195- 207.
doi: 10.1016/j.jcat.2007.04.006 |
44 |
ARSTAD B , NICHOLAS J B , HAW J F . Theoretical study of the methylbenzene side-chain hydrocarbon pool mechanism in methanol to olefin catalysis[J]. J Am Chem Soc, 2004, 126 (9): 2991- 3001.
doi: 10.1021/ja035923j |
45 |
SONG W G , HAW J F , NICHOLAS J B , et al. Methylbenzenes are the organic reaction centers for methanol-to-olefin catalysis on HSAPO-34[J]. J Am Chem Soc, 2000, 122 (43): 10726- 10727.
doi: 10.1021/ja002195g |
46 |
MCCANN D M , LESTHAEGHE D , KLETNIEKS P W , et al. A complete catalytic cycle for supramolecular methanol-to-olefins conversion by linking theory with experiment[J]. Angew Chem Int Ed, 2008, 47 (28): 5179- 5182.
doi: 10.1002/anie.200705453 |
47 |
ZHANG W N , ZHANG M Z , XU S T , et al. Methylcyclopentenyl cations linking initial stage and highly efficient stage in methanol-to-hydrocarbon process[J]. ACS Catal, 2020, 10 (8): 4510- 4516.
doi: 10.1021/acscatal.0c00799 |
48 |
XIAO D , XU S T , BROWNBILL N J , et al. Fast detection and structural identification of carbocations on zeolites by dynamic nuclear polarization enhanced solid-state NMR[J]. Chem Sci, 2018, 9 (43): 8184- 8193.
doi: 10.1039/C8SC03848A |
49 |
ZHANG M Z , XU S T , LI J Z , et al. Methanol to hydrocarbons reaction over Hβ zeolites studied by high resolution solid-state NMR spectroscopy: Carbenium ions formation and reaction mechanism[J]. J Catal, 2016, 335, 47- 57.
doi: 10.1016/j.jcat.2015.12.007 |
50 |
OLSBYE U , SVELLE S , LILLERUD K P , et al. The formation and degradation of active species during methanol conversion over protonated zeotype catalysts[J]. Chem Soc Rev, 2015, 44 (20): 7155- 7176.
doi: 10.1039/C5CS00304K |
51 |
SONG W , MARCUS D M , FU H , et al. An oft-studied reaction that may never have been: Direct catalytic conversion of methanol or dimethyl ether to hydrocarbons on the solid acids HZSM-5 or HSAPO-34[J]. J Am Chem Soc, 2002, 124 (15): 3844- 3845.
doi: 10.1021/ja016499u |
52 |
MINOVA I B , MATAM S K , GREENAWAY A , et al. Elementary steps in the formation of hydrocarbons from surface methoxy groups in HZSM-5 seen by synchrotron infrared microspectroscopy[J]. ACS Catal, 2019, 9 (7): 6564- 6570.
doi: 10.1021/acscatal.9b01820 |
53 |
HUNGER M . In situ NMR spectroscopy in heterogeneous catalysis[J]. Catal Today, 2004, 97 (1): 3- 12.
doi: 10.1016/j.cattod.2004.03.061 |
54 |
HAW J F , GOGUEN P W , XU T , et al. In situ NMR investigations of heterogeneous catalysis with samples prepared under standard reaction conditions[J]. Angew Chem Int Ed, 1998, 37 (7): 948- 949.
doi: 10.1002/(SICI)1521-3773(19980420)37:7<948::AID-ANIE948>3.0.CO;2-L |
55 |
LI J Z , WEI Y X , CHEN J , et al. Observation of heptamethylbenzenium cation over SAPO-type molecular sieve DNL-6 under real MTO conversion conditions[J]. J Am Chem Soc, 2012, 134 (2): 836- 839.
doi: 10.1021/ja209950x |
56 |
WANG J B , WEI Y X , LI J Z , et al. Direct observation of methylcyclopentenyl cations (MCP+) and olefin generation in methanol conversion over TON zeolite[J]. Catal Sci Technol, 2016, 6 (1): 89- 97.
doi: 10.1039/C5CY01420D |
57 |
CHEN J R , LI J Z , YUAN C Y , et al. Elucidating the olefin formation mechanism in the methanol to olefin reaction over AlPO-18 and SAPO-18[J]. Catal Sci Technol, 2014, 4 (9): 3268- 3277.
doi: 10.1039/C4CY00551A |
58 |
LI J Z , WEI Y X , CHEN J R , et al. Cavity controls the selectivity: Insights of confinement effects on MTO reaction[J]. ACS Catal, 2015, 5 (2): 661- 665.
doi: 10.1021/cs501669k |
59 |
ZHANG M , XU S T , WEI Y X , et al. Methanol conversion on ZSM-22, ZSM-35 and ZSM-5 zeolites: effects of 10-membered ring zeolite structures on methylcyclopentenyl cations and dual cycle mechanism[J]. RSC Adv, 2016, 6 (98): 95855- 95864.
doi: 10.1039/C6RA08884H |
60 |
ZHANG W N , CHEN J R , XU S T , et al. Methanol to olefins reaction over cavity-type zeolite: Cavity controls the critical intermediates and product selectivity[J]. ACS Catal, 2018, 8 (12): 10950- 10963.
doi: 10.1021/acscatal.8b02164 |
61 | ZHANG W N , XU S T , ZHI Y C , et al. Methylcyclopentenyl cation mediated reaction route in methanol-to-olefins reaction over H-RUB-50 with small cavity[J]. J Energy Chem, 2020, 4525- 30. |
62 |
XIAO D , XU S T , HAN X W , et al. Direct structural identification of carbenium ions and investigation of host-guest interaction in the methanol to olefins reaction obtained by multinuclear NMR correlations[J]. Chem Sci, 2017, 8 (12): 8309- 8314.
doi: 10.1039/C7SC03657D |
63 |
NI Q Z , DAVISO E , CAN T V , et al. High frequency dynamic nuclear polarization[J]. Acc Chem Res, 2013, 46 (9): 1933- 1941.
doi: 10.1021/ar300348n |
64 |
LESAGE A , LELLI M , GAJAN D , et al. Surface enhanced NMR spectroscopy by dynamic nuclear polarization[J]. J Am Chem Soc, 2010, 132 (44): 15459- 15461.
doi: 10.1021/ja104771z |
65 |
XIAO J R , WEI J . Diffusion mechanism of hydrocarbons in zeolites-Ⅱ. Analysis of experimental observations[J]. Chem Eng Sci, 1992, 47 (5): 1143- 1159.
doi: 10.1016/0009-2509(92)80237-7 |
66 |
SMIT B , MAESEN T L M . Towards a molecular understanding of shape selectivity[J]. Nature, 2008, 451 (7179): 671- 678.
doi: 10.1038/nature06552 |
67 | ZHOU J , FAN W , WANG Y D , et al. The essential mass transfer step in hierarchical/nano zeolite: surface diffusion[J]. Natl Sci Rev, 2019, 7 (11): 1630- 1632. |
68 | GAO S S , LIU Z Q , XU S T , et al. Cavity-controlled diffusion in 8-membered ring molecular sieve catalysts for shape selective strategy[J]. J Catal, 2019, 37751-62. |
69 |
ZENG S , XU S T , GAO S S , et al. Differentiating diffusivity in different channels of ZSM-5 zeolite by pulsed field gradient (PFG) NMR[J]. ChemCatChem, 2020, 12 (2): 463- 468.
doi: 10.1002/cctc.201901689 |
70 |
HAN J F , LIU Z Q , LI H , et al. Simultaneous evaluation of reaction and diffusion over molecular sieves for shape-selective catalysis[J]. ACS Catal, 2020, 10 (15): 8727- 8735.
doi: 10.1021/acscatal.0c02054 |
71 |
PENG S C , GAO M B , LI H , et al. Control of surface barriers in mass transfer to modulate methanol-to-olefins reaction over SAPO-34 zeolites[J]. Angew Chem Int Ed, 2020, 59 (49): 21945- 21948.
doi: 10.1002/anie.202009230 |
72 |
DAI W L , SCHEIBE M , LI L D , et al. Effect of the methanol-to-olefin conversion on the PFG NMR self-diffusivities of ethane and ethene in large-crystalline SAPO-34[J]. J Phys Chem C, 2012, 116 (3): 2469- 2476.
doi: 10.1021/jp208815g |
73 |
CNUDDE P , REDEKOP E A , DAI W , et al. Experimental and theoretical evidence for the promotional effect of acid sites on the diffusion of alkenes through small-pore zeolites[J]. Angew Chem Int Ed, 2021, 60 (18): 10016- 10022.
doi: 10.1002/anie.202017025 |
74 |
KÄRGER J . Transport Phenomena in Nanoporous Materials[J]. ChemPhysChem, 2015, 16 (1): 24- 51.
doi: 10.1002/cphc.201402340 |
75 |
KÄRGER J , VALIULLIN R . Mass transfer in mesoporous materials: the benefit of microscopic diffusion measurement[J]. Chem Soc Rev, 2013, 42 (9): 4172- 4197.
doi: 10.1039/c3cs35326e |
76 |
SMIT B , MAESEN T L M . Molecular simulations of zeolites: Adsorption, diffusion, and shape selectivity[J]. Chem Rev, 2008, 108 (10): 4125- 4184.
doi: 10.1021/cr8002642 |
77 |
BUURMANS I L C , WECKHUYSEN B M . Heterogeneities of individual catalyst particles in space and time as monitored by spectroscopy[J]. Nat Chem, 2012, 4 (11): 873- 886.
doi: 10.1038/nchem.1478 |
78 | LOSCH P , PINAR A B , WILLINGER M G , et al. H-ZSM-5 zeolite model crystals: Structure-diffusion-activity relationship in methanol-to-olefins catalysis[J]. J Catal, 2017, 34511-23. |
79 |
SHEN Y F , LE T T , FU D L , et al. Deconvoluting the competing effects of zeolite framework topology and diffusion path length on methanol to hydrocarbons reaction[J]. ACS Catal, 2018, 8 (12): 11042- 11053.
doi: 10.1021/acscatal.8b02274 |
80 |
SPRINGUEL-HUET M A , BONARDET J L , GéDéON A , et al. 129Xe NMR overview of xenon physisorbed in porous solids[J]. Magn Reson Chem, 1999, 37 (13): S1- S13.
doi: 10.1002/(SICI)1097-458X(199912)37:13<S1::AID-MRC578>3.0.CO;2-X |
81 | WEILAND E , SPRINGUEL-HUET M A , NOSSOV A , et al. 129Xenon NMR: Review of recent insights into porous materials[J]. Microporous Mesoporous Mater, 2016, 225 (1): 41- 65. |
82 |
GAO S S , XU S T , WEI Y X , et al. Direct probing of heterogeneity for adsorption and diffusion within a SAPO-34 crystal[J]. Chem Commun, 2019, 55 (72): 10693- 10696.
doi: 10.1039/C9CC05322K |
83 |
GAO S S , YUAN J M , LIU Z Q , et al. Correlating the adsorption preference and mass transfer of xenon in RHO-type molecular sieves[J]. J Phys Chem C, 2021, 125 (12): 6832- 6838.
doi: 10.1021/acs.jpcc.0c10813 |
84 |
LOU C Y , ZHANG W N , MA C , et al. Revealing the specific spatial confinement in 8-membered ring cage-type molecular sieves via solid-state NMR and theoretical calculations[J]. ChemCatChem, 2021, 13 (5): 1299- 1305.
doi: 10.1002/cctc.202001682 |
85 |
ANDERSON M W , KLINOWSKI J . Direct observation of shape selectivity in zeolite ZSM-5 by magic-angle-spinning NMR[J]. Nature, 1989, 339 (6221): 200- 203.
doi: 10.1038/339200a0 |
86 |
WEI Y X , YUAN C Y , LI J Z , et al. Coke formation and carbon atom economy of methanol-to-olefins reaction[J]. ChemSusChem, 2012, 5 (5): 906- 912.
doi: 10.1002/cssc.201100528 |
[1] | 肖瑶,夏长久,易先锋,刘凤庆,刘尚斌,郑安民. 固体核磁共振技术在锡硅分子筛表征中的应用[J]. 波谱学杂志, 2021, 38(4): 571-584. |
[2] | 袁晨露, 郭茜旎, 陈世桢, 周欣. 新型葫芦[6]脲纳米颗粒超极化129Xe“分子笼”研究[J]. 波谱学杂志, 2019, 36(4): 472-480. |
[3] | 李红卫, 袁志良, 夏斌. 扩散序谱(DOSY)实验测定缓冲体系中蛋白质表观分子量[J]. 波谱学杂志, 2018, 35(3): 280-286. |
[4] | 李博解,徐 君*,王 强,王秀梅,齐国栋,邓 风*. 铜丝光沸石上甲醇羰基化反应的固体核磁共振研究[J]. 波谱学杂志, 2014, 31(3): 331-340. |
[5] | 刘奕, 谭相石. 乙酰辅酶A合成酶/一氧化碳脱氢酶的EPR研究[J]. 波谱学杂志, 2011, 28(4): 490-501. |
[6] | 李芳1,3 ;赵应声2 ;雷爱文2 ;刘买利1 . 钯催化Csp-Csp3偶联反应的13C NMR定量研究[J]. 波谱学杂志, 2008, 25(4): 461-469. |
[7] | 杨盈1,2 ; 严宝珍1 ; 聂舟2 ; 王梅1 ; 田秋2 ; 刘扬2 . α-生育酚与自由基DPPH·的反应机理研究[J]. 波谱学杂志, 2008, 25(3): 331-336. |
[8] | 作者:牛亚明 导师:姜振华. 含萘环聚芳醚酮类聚合物的分子设计与性质研究[J]. 波谱学杂志, 2006, 23(4): 552-556. |
[9] | 谢海滨, 李鲠颖, 杨光. 自制微成像系统的Spiral快速成像实现[J]. 波谱学杂志, 2004, 21(4): 467-474. |
[10] | 崔艳芳1,2,文健3,刘买利1*. 应用脉冲梯度场NMR研究脂蛋白的自扩散系数分布[J]. 波谱学杂志, 2003, 20(1): 8-15. |
[11] | 郑绍宽, 廖新丽, 林国兴, 林东海, 吴钦义. 结合脉冲梯度场的选择激发技术在溶剂峰抑制中的应用[J]. 波谱学杂志, 1999, 16(4): 368-372. |
[12] | 林国兴, 廖新丽, 林东海, 郑绍宽, 陈忠, 吴钦义. 脉冲梯度场增强的DQF-COSY实验t1噪声研究[J]. 波谱学杂志, 1999, 16(1): 13-20. |
[13] | 郑绍宽, 林东海, 廖新丽, 林国兴, 吴钦义. 结合脉冲梯度场(PFG)的选择性形状脉冲的相位特性研究[J]. 波谱学杂志, 1998, 15(6): 527-531. |
[14] | 吴先球, 边明华, 李向红, 李晓勇, 邬学文. 脉冲梯度增强技术的初步研究[J]. 波谱学杂志, 1996, 13(2): 169-175. |
[15] | 陈忠, 卢葛覃, 吴钦义. 超快速COSY类2D NMR实验弛豫假峰的抑制[J]. 波谱学杂志, 1995, 12(3): 331-337. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||