波谱学杂志 ›› 2021, Vol. 38 ›› Issue (2): 215-226.doi: 10.11938/cjmr20202856
收稿日期:
2020-09-21
出版日期:
2021-06-05
发布日期:
2020-11-06
通讯作者:
王胜建
E-mail:wshj0908@163.com
基金资助:
Kun MENG1,2,Sheng-jian WANG2,*(),Zong-an XUE2,Rui-qing HOU3,Liang XIAO1
Received:
2020-09-21
Online:
2021-06-05
Published:
2020-11-06
Contact:
Sheng-jian WANG
E-mail:wshj0908@163.com
摘要:
页岩气储层的孔隙结构复杂且非均质性较强,导致储层表征及有效性评价面临极大挑战.为了建立页岩气储层孔隙结构的定量评价方法,本文选取了鄂西宜昌地区陡山沱组二段20块岩心,采用0.069 ms的回波间隔开展饱含盐水状态下的核磁共振(NMR)实验.在此基础上,对T2谱进行了多重分形特征分析,提取了对页岩气储层孔隙结构较敏感的参数,并建立了基于最小与最大广义分维数差值(Dmin-Dmax)和谱宽(Δα)划分页岩气储层类型的方法及标准.该方法对于有效提高页岩气储层的预测精度、指导开发选层等具有重要意义.
中图分类号:
孟昆,王胜建,薛宗安,侯瑞卿,肖亮. 利用核磁共振资料定量评价页岩孔隙结构[J]. 波谱学杂志, 2021, 38(2): 215-226.
Kun MENG,Sheng-jian WANG,Zong-an XUE,Rui-qing HOU,Liang XIAO. Quantitative Evaluation of Shale Pore Structure Using Nuclear Magnetic Resonance Data[J]. Chinese Journal of Magnetic Resonance, 2021, 38(2): 215-226.
表1
20块页岩岩心样品的NMR孔隙度、T50、孔隙比例和T2谱的多重分形参数
编号 | 岩性 | Φ-nmr/% | T50/ms | 微孔/% | 中孔/% | 宏孔/% | Dmin* | Dmax* | D-1* | D1* | Δα* | Dmin-Dmax* | ||
1# | 黑色碳质页岩 | 2.02 | 0.598 | 0.376 | 48.681 | 50.942 | 1.236 | 0.293 | 1.097 | 0.762 | 1.026 | 0.943 | ||
2# | 黑色碳质页岩 | 1.19 | 0.604 | 0.638 | 48.506 | 50.856 | 1.167 | 0.378 | 1.072 | 0.838 | 0.854 | 0.789 | ||
3# | 黑色碳质页岩 | 0.86 | 0.257 | 1.026 | 65.735 | 33.239 | 1.231 | 0.227 | 1.111 | 0.669 | 1.071 | 1.004 | ||
4# | 黑色碳质页岩 | 2.19 | 0.542 | 0.338 | 51.067 | 48.595 | 1.235 | 0.313 | 1.100 | 0.765 | 1.006 | 0.923 | ||
5# | 黑色碳质页岩 | 2.08 | 0.769 | 0.367 | 44.567 | 55.065 | 1.199 | 0.457 | 1.066 | 0.873 | 0.854 | 0.742 | ||
6# | 黑色碳质页岩 | 1.11 | 0.327 | 0.585 | 61.891 | 37.524 | 1.238 | 0.229 | 1.115 | 0.679 | 1.076 | 1.009 | ||
7# | 黑色碳质页岩 | 1.07 | 0.378 | 0.636 | 58.550 | 40.814 | 1.231 | 0.312 | 1.095 | 0.777 | 0.999 | 0.919 | ||
8# | 黑色碳质页岩 | 1.99 | 0.307 | 0.723 | 62.884 | 36.393 | 1.232 | 0.266 | 1.106 | 0.724 | 1.036 | 0.965 | ||
9# | 黑色碳质页岩 | 1.69 | 0.421 | 0.252 | 57.065 | 42.684 | 1.246 | 0.262 | 1.112 | 0.709 | 1.053 | 0.984 | ||
10# | 灰黑色白云质页岩 | 1.87 | 0.115 | 2.348 | 70.629 | 27.023 | 1.320 | 0.275 | 1.126 | 0.719 | 1.136 | 1.046 | ||
11# | 灰黑色白云质页岩 | 2.56 | 0.360 | 1.105 | 57.662 | 41.233 | 1.220 | 0.288 | 1.090 | 0.757 | 1.024 | 0.931 | ||
12# | 灰黑色白云质页岩 | 2.15 | 0.344 | 0.713 | 59.893 | 39.394 | 1.226 | 0.308 | 1.101 | 0.759 | 0.998 | 0.919 | ||
13# | 灰黑色白云质页岩 | 1.69 | 0.151 | 0.884 | 85.168 | 13.948 | 1.370 | 0.224 | 1.168 | 0.603 | 1.235 | 1.146 | ||
14# | 灰黑色白云质页岩 | 1.28 | 0.141 | 1.658 | 80.521 | 17.820 | 1.328 | 0.238 | 1.140 | 0.662 | 1.177 | 1.090 | ||
15# | 灰黑色白云质页岩 | 2.10 | 0.253 | 0.835 | 66.570 | 32.595 | 1.236 | 0.270 | 1.109 | 0.721 | 1.031 | 0.966 | ||
16# | 灰黑色白云质页岩 | 1.10 | 0.167 | 1.436 | 69.717 | 28.846 | 1.310 | 0.232 | 1.118 | 0.675 | 1.188 | 1.078 | ||
17# | 灰黑色白云质页岩 | 0.89 | 0.183 | 1.333 | 59.503 | 39.165 | 1.324 | 0.253 | 1.122 | 0.703 | 1.180 | 1.071 | ||
18# | 灰黑色白云质页岩 | 3.17 | 0.102 | 1.960 | 87.002 | 11.037 | 1.364 | 0.217 | 1.171 | 0.607 | 1.228 | 1.147 | ||
19# | 灰黑色白云质页岩 | 1.75 | 0.210 | 0.589 | 74.234 | 25.177 | 1.337 | 0.264 | 1.136 | 0.695 | 1.169 | 1.073 | ||
20# | 灰黑色白云质页岩 | 2.55 | 0.149 | 0.945 | 79.074 | 19.981 | 1.359 | 0.260 | 1.148 | 0.682 | 1.200 | 1.100 |
表2
20块页岩样品三类孔隙结构的多重分形特征参数的分布范围和平均值
类型 | Dmin | Dmax | D-1 | D1 | Δα | Dmin-Dmax |
Ⅰ | 1.167~1.236 | 0.288~0.456 | 1.066~1.101 | 0.757~0.873 | 0.854~1.026 | 0.742~0.943 |
1.216 | 0.336 | 1.089 | 0.790 | 0.966 | 0.881 | |
Ⅱ | 1.231~1.245 | 0.227~0.270 | 1.106~1.115 | 0.669~0.724 | 1.031~1.075 | 0.965~1.009 |
1.237 | 0.251 | 1.111 | 0.700 | 1.053 | 0.986 | |
Ⅲ | 1.310~1.370 | 0.217~0.275 | 1.118~1.171 | 0.603~0.719 | 1.136~1.235 | 1.046~1.147 |
1.339 | 0.245 | 1.141 | 0.668 | 1.189 | 1.093 |
表3
20块页岩样品三类孔隙结构的NMR孔隙度、T50,以及孔隙比例的分布范围和平均值
类型 | Φ-nmr/% | T50/ms | 微孔/% | 中孔% | 宏孔/% |
Ⅰ | 1.07~2.56 | 0.344~0.769 | 0.338~1.105 | 44.567~59.893 | 39.394~55.065 |
1.89 | 0.514 | 0.596 | 52.704 | 46.700 | |
Ⅱ | 0.86~2.10 | 0.253~0.421 | 0.252~1.026 | 57.065~66.570 | 32.595~42.684 |
1.55 | 0.313 | 0.684 | 62.829 | 36.487 | |
Ⅲ | 0.89~3.17 | 0.102~0.210 | 0.589~2.348 | 59.503~87.002 | 11.037~39.165 |
1.79 | 0.152 | 1.394 | 75.731 | 22.875 |
1 | AMBROSE R J, HARTMAN R C, DIAZ C M, et al. New pore-scale considerations for shale gas in place calculations[C]. SPE, 2010: 131772. |
2 |
ZHANG J C , JIN Z J , YUAN M S . Reservoiring mechanism of shale gas and its distribution[J]. Natural Gas Industry, 2004, 24 (7): 15- 18.
doi: 10.3321/j.issn:1000-0976.2004.07.005 |
张金川, 金之钧, 袁明生. 页岩气成藏机理和分布[J]. 天然气工业, 2004, 24 (7): 15- 18.
doi: 10.3321/j.issn:1000-0976.2004.07.005 |
|
3 | CURTIS J B . Fractured shale-gas systems[J]. AAPG Bulletin, 2002, 86 (11): 1921- 1938. |
4 |
ROSS D J K . Shale gas potential of the lower jurassic uordondale member, northeastern British Columbia, Canada[J]. B Can Petrol Geol, 2007, 55 (1): 51- 75.
doi: 10.2113/gscpgbull.55.1.51 |
5 | HOU Y G , HE S , YI J Z , et al. Effect of pore structure on methane sorption capacity of shales[J]. Petroleum Exploration and Development, 2014, 41 (2): 248- 256. |
侯宇光, 何生, 易积正, 等. 页岩孔隙结构对甲烷吸附能力的影响[J]. 石油勘探与开发, 2014, 41 (2): 248- 256. | |
6 | HUANG Z K , CHEN J P , XUE H T , et al. Microstructural characteristics of the cretaceous Qingshankou formation shale, Songliao basin[J]. Petroleum Exploration and Development, 2013, 40 (1): 58- 65. |
黄振凯, 陈建平, 薛海涛, 等. 松辽盆地白垩系青山口组泥页岩孔隙结构特征[J]. 石油勘探与开发, 2013, 40 (1): 58- 65. | |
7 | XIONG J , LIU X J , LIANG L X . Pore structure and fractal characteristics of Longmaxi formation shale in the Changning region of Sichuan basin[J]. Geological Science and Technology Information, 2015, 34 (4): 75- 82. |
熊健, 刘向君, 梁利喜. 四川盆地长宁构造地区龙马溪组页岩孔隙结构及其分形特征[J]. 地质科技情报, 2015, 34 (4): 75- 82. | |
8 |
WANG L , FU Y H , LI J , et al. Experimental study on the wettability of Longmaxi gas shale from Jiaoshiba gas field, Sichuan Basin, China[J]. J Petrol Sci Eng, 2017, 151, 488- 495.
doi: 10.1016/j.petrol.2017.01.036 |
9 |
OUYANG Z Q , LIU D M , CAI Y D , et al. Fractal analysis on heterogeneity of pore-fractures in middle-high rank coals with NMR[J]. Energ Fuel, 2016, 30 (7): 5449- 5458.
doi: 10.1021/acs.energyfuels.6b00563 |
10 |
LAI J , WANG G W , FAN Z Y , et al. Insight into the pore structure of tight sandstones using NMR and HPMI measurements[J]. Energ Fuel, 2016, 30 (12): 10200- 10214.
doi: 10.1021/acs.energyfuels.6b01982 |
11 |
GE X M , FAN Y R , CAO Y C , et al. Investigation of organic related pores in unconventional reservoir and its quantitative evaluation[J]. Energ Fuel, 2016, 30 (6): 4699- 4709.
doi: 10.1021/acs.energyfuels.6b00590 |
12 | WANG Z Z , LI X , WEI Y X , et al. NMR technologies for evaluating oil & gas shale: a review[J]. Chinese J Magn Reson, 2015, 32 (4): 688- 698. |
王志战, 李新, 魏杨旭, 等. 页岩油气层核磁共振评价技术综述[J]. 波谱学杂志, 2015, 32 (4): 688- 698. | |
13 |
SU J L , SUN J M , YUAN J B , et al. Reservoir productivity evaluation based on NMR pore structure[J]. Journal of Xi'an Shi You University (Natural Science), 2011, 26 (3): 43- 47.
doi: 10.3969/j.issn.1673-064X.2011.03.008 |
苏俊磊, 孙建孟, 苑吉波, 等. 基于核磁共振孔隙结构的产能评价[J]. 西安石油大学学报(自然科学版), 2011, 26 (3): 43- 47.
doi: 10.3969/j.issn.1673-064X.2011.03.008 |
|
14 | WANG X X , WANG G W , LUO X P , et al. Application of NMR log to reservoir evaluation in Shinan oilfield[J]. Well Logging Technology, 2007, 31 (3): 76- 80. |
王晓霞, 王贵文, 罗兴平, 等. 核磁共振测井在石南油田储层分类评价中的应用[J]. 测井技术, 2007, 31 (3): 76- 80. | |
15 |
XIAO L , MAO Z Q , ZHOU Z C , et al. A new methodology of constructing pseudo capillary pressure (Pc) curves from nuclear magnetic resonance (NMR) logs[J]. J Petrol Sci Eng, 2016, 147, 154- 167.
doi: 10.1016/j.petrol.2016.05.015 |
16 |
WANG Z Z , XU X Q . Quantitative evaluation of reservoir separation with MR-ML technology[J]. Chinese J Magn Reson, 2010, 27 (2): 214- 220.
doi: 10.3969/j.issn.1000-4556.2010.02.009 |
王志战, 许小琼. 利用核磁共振录井技术定量评价储层的分选性[J]. 波谱学杂志, 2010, 27 (2): 214- 220.
doi: 10.3969/j.issn.1000-4556.2010.02.009 |
|
17 |
MANDELBROT B B , AIZENMAN M . Fractals: Form, chance, and dimension[J]. Physics Today, 1979, 32 (5): 65- 66.
doi: 10.1063/1.2995555 |
18 |
CARLOS G G , FERNANDO S G M , CANIEGO J . A protocol for fractal studies on porosity of porous media: High quality soil porosity images[J]. Earth Sci, 2017, 28, 888- 896.
doi: 10.1007/s12583-017-0777-x |
19 |
YANG Z Y , POURGHASEMI H R , LEE Y H . Fractal analysis of rainfall-induced landslide and debris flow spread distribution in the Chenyulan Creek Basin, Taiwan[J]. Earth Sci, 2016, 27 (1): 151- 159.
doi: 10.1007/s12583-016-0633-4 |
20 |
KROHN C E . Fractal measurements of sandstones, shales, and carbonates[J]. J Geophys Res-Sol Ea, 1988, 93 (B4): 3297- 3305.
doi: 10.1029/JB093iB04p03297 |
21 | JIA F S , SHEN P P , LI K W . Fractal features and application research of sandstone pore structure[J]. Fault-Block Oil and Gas Field, 1995, 2 (1): 16- 21. |
贾芬淑, 沈平平, 李克文. 砂岩孔隙结构的分形特征及应用研究[J]. 断块油气田, 1995, 2 (1): 16- 21. | |
22 | MANDELBORT B B . Multifractal measures, especially for the geophysicist[J]. Pure Appl Geophys, 1989, 131 (1): 5- 42. |
23 |
MULLER J . Characterization of the North Sea chalk by multifractal analysis[J]. J Geophys Res-Atmos, 1994, 99 (B4): 7275- 7280.
doi: 10.1029/94JB00117 |
24 | HU L , ZHU Y M , CHEN S B , et al. Fractal characteristics of shale pore structure of Longmaxi formation in Shuanghe area in southern Sichuan[J]. Xinjiang Petroleum Geology, 2013, 34 (1): 79- 82. |
胡琳, 朱炎铭, 陈尚斌, 等. 蜀南双河龙马溪组页岩孔隙结构的分形特征[J]. 新疆石油地质, 2013, 34 (1): 79- 82. | |
25 | JIANG Z H , MAO Z Q , SHI Y J , et al. Multifractal characteristics and classification of tight sandstone reservoirs: a case study from the triassic Yanchang formation, Ordos Basin, China[J]. Energies, 2018, 11 (9): 1- 17. |
26 |
ZHAO P Q , WANG X X , CAI J C , et al. Multifractal analysis of pore structure of Middle Bakken formation using low temperature N2 adsorption and NMR measurements[J]. J Petrol Sci Eng, 2019, 176, 312- 320.
doi: 10.1016/j.petrol.2019.01.040 |
27 | WANG M , SHI J , JIAO C X , et al. Multi-fractal characteristics of micro-pores of Shahejie Formation shale in Dongying Sag[J]. Petroleum Geology and Recovery Efficiency, 2019, 26 (1): 72- 79. |
王民, 石瑾, 焦晨雪, 等. 东营凹陷沙河街组页岩微观孔隙多重分形特征[J]. 油气地质与采收率, 2019, 26 (1): 72- 79. | |
28 | LIU K Q , OSTADHASSAN M , ZOU J , et al. Multifractal analysis of gas adsorption isotherms for pore structure characterization of the Bakken Shale[J]. Fuel, 2018, 219 (1): 296- 311. |
29 | WANG S J , REN S M , ZHOU Z , et al. Discussion on petrophysical evaluation of shale gas reservoir in the second member of Sinian Doushantuo formation in western Hubei province, south China[J]. Geology in China, 2020, 47 (1): 133- 143. |
王胜建, 任收麦, 周志, 等. 鄂西地区震旦系陡山沱组二段页岩气储层测井评价初探[J]. 中国地质, 2020, 47 (1): 133- 143. | |
30 | ZHAI G Y , BAO S J , WANG Y F , et al. Reservoir accumulation model at the edge of palaeohigh and significant discovery of shale gas in Yichang area, Hubei province[J]. Acta Geoscientia Sinica, 2017, 38 (4): 441- 447. |
翟刚毅, 包书景, 王玉芳, 等. 古隆起边缘成藏模式与湖北宜昌页岩气重大发现[J]. 地球学报, 2017, 38 (4): 441- 447. | |
31 | YONG Z Q , ZHANG X , DENG H B , et al. Differences about organic matter enrichment in the shale section of Ediacaran Doushantuo Formation in West Hubei of China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2016, 39 (6): 567- 574. |
雍自权, 张旋, 邓海波, 等. 鄂西地区陡山沱组页岩段有机质富集的差异性[J]. 成都理工大学学报(自然科学版), 2016, 39 (6): 567- 574. | |
32 | CHEN X H , ZHANG G T , HU Y . Deposit environment of the ediacaran doushantuo formation in Yichang area, western Hubei province, China and its geological significance for shale gas[J]. Geology and Mineral Resources of South China, 2016, 32 (2): 106- 116. |
陈孝红, 张国涛, 胡亚. 鄂西宜昌地区埃迪卡拉系陡山沱组页岩沉积环境及其页岩气地质意义[J]. 华南地质与矿产, 2016, 32 (2): 106- 116. | |
33 | 匡立春, 孙仲春, 毛志强, 等. 核磁共振测井技术在准噶尔盆地油气勘探开发中的应用[M]. 北京: 石油工业出版社, 2015, 84 84- 87. |
34 | ZHANG G , HE Z B , CAO W Q , et al. Effects of echo time on NMR apparent porosity and correction methods[J]. Chinese J Magn Reson, 2020, 37 (2): 172- 181. |
张宫, 何宗斌, 曹文倩, 等. 回波间隔对核磁共振表观孔隙度的影响及矫正方法[J]. 波谱学杂志, 2020, 37 (2): 172- 181. | |
35 |
ZHAO P Q , WANG Z L , SUN Z C , et al. Investigation on the pore structure and multifractal characteristics of tight oil reservoirs using NMR measurements: Permian Lucaogou Formation in Jimusaer Sag, Junggar basin[J]. Mar Petrol Geol, 2017, 86, 1067- 1081.
doi: 10.1016/j.marpetgeo.2017.07.011 |
36 |
MAO Z Q , XIAO L , WANG Z N , et al. Estimation of permeability by integrating nuclear magnetic resonance (NMR) logs with mercury injection capillary pressure (MICP) data in tight gas sands[J]. Appl Magn Reson, 2013, 44 (4): 449- 468.
doi: 10.1007/s00723-012-0384-z |
37 | ZHAO P Q , SUN Z C , LUO X P , et al. Study on the response mechanisms of nuclear magnetic resonance (NMR) log in tight oil reservoirs[J]. Chinese J Geophysics, 2016, 59 (5): 1927- 1937. |
38 |
IUPAC (International Union of Pure and Applied Chemistry) . Physical chemistry division commission on colloid and surface chemistry, subcommittee on characterization of porous solids: Recommendations for the characterization of porous solids (Technical Report)[J]. Pure Appl Chem, 1994, 66 (8): 1739- 1758.
doi: 10.1351/pac199466081739 |
39 | GE X M , FAN Y R , ZHU X J , et al. Determination of nuclear magnetic resonance T2 cutoff value based on multifractal theory-An application in sandstone with complex pore structure[J]. Geophysics, 2014, 80 (1): D11- D21. |
40 | 肖立志. 核磁共振成像测井与岩石核磁共振及其应用[M]. 北京: 科学出版社, 1998. |
41 | DUNN K J , BERGMAN J D , LATORRACA A G . Nuclear magnetic resonance petrophysical and logging application[M]. Pergamon: Elsevier, 2002. |
42 | SONDERGELD C H, AMBROSE R J, RAI C S, et al. Micro-structural studies of gas shales[C]//SPE131771, Proceedings of SPE Unconventional Gas Conference, Allen, TX: Society of Petroleum Engineers, 2010, doi: 10.2118/131771-MS. |
43 | CURTIS M E, AMBROSE R J, SONDERGELD G H, et al. Structural characterization of gas shales on the micro and nano-scales[C]//SPE137693, Proceedings of SPE Unconventional Gas Conference, Allen, TX: Society of Petroleum Engineers, 2010, doi: 10.2118/137693-MS. |
44 | XIAO L , MAO Z Q , ZOU C C , et al. A new methodology of constructing pseudo capillary pressure (Pc) curves from nuclear magnetic resonance (NMR) logs[J]. J Petrol Sci Eng, 2016, 147, 154- 167. |
45 | HALSEY T C , JENSEN M H , KADANOFF L P , et al. Fractal measures and their singularities: The characterization of strange sets[J]. Phys Rev A, 1986, 33 (2): 1141- 1151. |
46 | GUTIERREZ C G , JOSE F S . Multifractal analysis of soil micro and macroporosity using digital images obtained with fluorescent dye[J]. Geophys Res Abstr, 2006, 8, 11094. |
47 | CAI J C , YU B M , ZOU M Q , et al. Fractal analysis of surface roughness of particles in porous media[J]. Chinese Phys Letters, 2010, 27, 157- 160. |
[1] | 王崇武,黄曦,石磊,陈世桢,周欣. 组织蛋白酶B响应的超极化129Xe MRI探针对肺癌细胞的超灵敏探测[J]. 波谱学杂志, 2021, 38(3): 336-344. |
[2] | 牛星星,白志杰,杨翼,高杨文,王雪璐,姚叶锋. 原位低场核磁共振弛豫法定量监测光催化Cr(Ⅵ)还原反应[J]. 波谱学杂志, 2021, 38(3): 403-413. |
[3] | 谢金华,王乐,刘盼,苏稀琪,MINGLi-June. 盐酸四环素中可交换氢和氢键的核磁共振波谱研究[J]. 波谱学杂志, 2021, 38(3): 313-322. |
[4] | 吴嘉敏,贺玉成,徐征,朱延河,姜文正. 用于土壤水分测量的磁共振射频线圈宽频匹配方法[J]. 波谱学杂志, 2021, 38(3): 414-423. |
[5] | 王子豪,徐赫,汪涛,杨善中,丁运生,魏海兵. 外型和内型C-2位单取代降冰片烯衍生物的核磁共振波谱研究[J]. 波谱学杂志, 2021, 38(3): 323-335. |
[6] | 黄兴,张子立,胡新宁,牛飞飞,孙万硕,孔祥东,戴银明. 核磁共振磁体超导接头工艺研究进展[J]. 波谱学杂志, 2021, 38(3): 424-432. |
[7] | 张书怀,马慧,郭朝晖,马敏珺,乔岩,王英雄. 正丁醇/丙酸与腐殖酸相互作用的NMR研究[J]. 波谱学杂志, 2021, 38(3): 301-312. |
[8] | 赵心怡,韩冬,罗红军,沈文斌,杨功俊. 德拉沙星葡甲胺波谱学数据解析[J]. 波谱学杂志, 2021, 38(2): 268-276. |
[9] | 陈晓雯,黄碧玲,黄少华,赵玉芬. Bacillus subtilis转录因子CtsR蛋白中clpC操纵子结合区域的NMR研究[J]. 波谱学杂志, 2021, 38(2): 155-163. |
[10] | 随松,高国梁,王雪璐,魏达秀,姚叶锋. 固-液-气三相环境下非均相苯加氢反应的原位核磁共振研究[J]. 波谱学杂志, 2021, 38(2): 194-203. |
[11] | 李毅,辛家祥,王嘉琛,魏达秀,姚叶锋. 三种脉冲序列制备核自旋单重态效率的比较[J]. 波谱学杂志, 2021, 38(2): 227-238. |
[12] | 余锦波,张偲,张则婷,徐国华,李从刚. Alpha-突触核蛋白与完整线粒体相互作用的NMR研究[J]. 波谱学杂志, 2021, 38(2): 164-172. |
[13] | 窦梦雨,赵奇,侯相林,刘雷,唐明兴,王英雄. 蒽加氢产物的结构指认和定量核磁共振分析[J]. 波谱学杂志, 2021, 38(2): 239-248. |
[14] | 张伟,吴意明,崔维平,肖亮. 稠油储层核磁共振孔隙度校正方法[J]. 波谱学杂志, 2021, 38(2): 204-214. |
[15] | 张志武,杨菊,聂泽锋,叶尚祥,董旭,唐淳. 基于19F化学标记磷酸化泛素的温度传感器开发[J]. 波谱学杂志, 2021, 38(2): 173-181. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||