[1] |
GHOSH P, TAYLOR T K F. The Knee joint meniscus: a fibrocartilage of some distinction[J]. Clin Orthop Relat R, 1987, 224: 52-63.
|
[2] |
MARKES A R, HODAX J D, MA C B. Meniscus form and function[J]. Clin Sport Med, 2020, 39(1): 1-12.
doi: S0278-5919(19)30068-7
pmid: 31767101
|
[3] |
HUTCHINSON I D, MORAN C J, POTTER H G, et al. Restoration of the meniscus: form and function[J]. Am J Sport Med, 2014, 42(4): 987-998.
doi: 10.1177/0363546513498503
|
[4] |
BEAUFILS P, PUJOL N. Management of traumatic meniscal tear and degenerative meniscal lesions. Save the meniscus[J]. Orthop Traumatol-Sur, 2017, 103(8): S237-S244.
|
[5] |
OZEKI N, KOGA H, SEKIYA I. Degenerative meniscus in knee osteoarthritis: from pathology to treatment[J]. Life, 2022, 12(4): 603.
doi: 10.3390/life12040603
|
[6] |
OAKDEN-RAYNER L, CARNEIRO G, BESSEN T, et al. Precision radiology: predicting longevity using feature engineering and deep learning methods in a radiomics framework[J]. Sci Rep, 2017, 7(1): 1648.
doi: 10.1038/s41598-017-01931-w
|
[7] |
JIN W, LI X, FATEHI M, et al. Guidelines and evaluation of clinical explainable AI in medical image analysis[J]. Med Image Anal, 2023, 84: 102684.
doi: 10.1016/j.media.2022.102684
|
[8] |
FARUCH-BILFELD M, LAPÈGUE F, CHIAVASSA H, et al. Imaging of meniscus and ligament injuries of the knee[J]. Diagn Interv Imag, 2016, 97(7-8): 749-765.
|
[9] |
NGUYEN J C, DE SMET A A, GRAF B K, et al. MR imaging-based diagnosis and classification of meniscal tears[J]. Radiographics, 2014, 34(4): 981-999.
doi: 10.1148/rg.344125202
pmid: 25019436
|
[10] |
BONIATIS I, PANAYIOTAKIS G, PANAGIOTOPOULOS E. A computer-based system for the discrimination between normal and degenerated menisci from magnetic resonance images[C]// 2008 IEEE International Workshop on Imaging Systems and Techniques, Chania, Greece: IEEE, 2008: 335-339.
|
[11] |
KÖSE C, GENÇALIOĞLU O, ŞEVIK U. An automatic diagnosis method for the knee meniscus tears in MR images[J]. Expert Syst Appl, 2009, 36(2): 1208-1216.
doi: 10.1016/j.eswa.2007.11.036
|
[12] |
FU J C, LIN C C, WANG C N, et al. Computer-aided diagnosis for knee meniscus tears in magnetic resonance imaging[J]. J Ind Prod Eng, 2013, 30(2): 67-77.
|
[13] |
MA Y, XING C J, XIAO L. Knee joint image segmentation and model construction based on cascaded network[J]. Chinese J Magn Reson, 2022, 39(2): 184-195.
|
|
马岩, 邢藏菊, 肖亮. 基于级联网络的膝关节图像分割与模型构建[J]. 波谱学杂志, 2022, 39(02): 184-195.
|
[14] |
LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
doi: 10.1038/nature14539
|
[15] |
ZEILER M D, FERGUS R. Visualizing and understanding convolutional networks[C]// Computer Vision-ECCV 2014: 13th European Conference, Zurich, Switzerland: Springer International Publishing, 2014: 818-833.
|
[16] |
HU Y W, SU X Y, KE X T, et al. The research progress of diagnosing meniscus injury in MRI based on deep learning[J]. Chin J Magn Reson Imaging, 2022, 13(05):167-170.
|
|
胡伟艺, 苏娴彦, 柯晓婷, 等. 基于深度学习的MRI诊断半月板损伤的研究进展[J]. 磁共振成像, 2022, 13(05): 167-170.
|
[17] |
BIEN N, RAJPURKAR P, BALL R L, et al. Deep-learning-assisted diagnosis for knee magnetic resonance imaging: development and retrospective validation of MRNet[J]. PLoS Med, 2018, 15(11): e1002699.
doi: 10.1371/journal.pmed.1002699
|
[18] |
TSAI C H, KIRYATI N, KONEN E, et al. Knee injury detection using MRI with efficiently-layered network (ELNet)[C]// Medical Imaging with Deep Learning. Montréel, Canada: PMLR, 2020: 784-794.
|
[19] |
FRITZ B, MARBACH G, CIVARDI F, et al. Deep convolutional neural network-based detection of meniscus tears: comparison with radiologists and surgery as standard of reference[J]. Skeletal Radiol, 2020, 49: 1207-1217.
doi: 10.1007/s00256-020-03410-2
pmid: 32170334
|
[20] |
RIZK B, BRAT H, ZILLE P, et al. Meniscal lesion detection and characterization in adult knee MRI: a deep learning model approach with external validation[J]. Phys Medica, 2021, 83: 64-71.
doi: 10.1016/j.ejmp.2021.02.010
|
[21] |
LU L X, ZHOU J Z, GUO Y C, et al. Prediction of knee injury based on multimodal fusion[J]. Comput Eng Appl, 2021, 57(09): 225-232.
|
|
陆莉霞, 邹俊忠, 郭玉成, 等. 多模态融合的膝关节损伤预测[J]. 计算机工程与应用, 2021, 57(09): 225-232.
|
[22] |
MA Y, QIN Y, LIANG C, et al. Visual cascaded-progressive convolutional neural network (C-PCNN) for diagnosis of meniscus injury[J]. Diagnostics, 2023, 13(12): 2049.
doi: 10.3390/diagnostics13122049
|
[23] |
HUNG T N K, VY V P T, TRI N M, et al. Automatic detection of meniscus tears using backbone convolutional neural networks on knee MRI[J]. J Magn Reson Imaging, 2023, 57(3): 740-749.
doi: 10.1002/jmri.v57.3
|
[24] |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// Proceedings of the IEEE conference on computer vision and pattern recognition, Las Vegas, NV, USA: IEEE, 2016: 770-778.
|
[25] |
BACH F R, LANCKRIET G R G, JORDAN M I. Multiple kernel learning, conic duality, and the SMO algorithm[C]// Proceedings of the twenty-first international conference on Machine learning. Banff, Alberta, Canada: ICML, 2004: 6.
|
[26] |
SUBRAHMANYA N, SHIN Y C. Sparse multiple kernel learning for signal processing applications[J]. IEEE T Pattern Anal, 2009, 32(5): 788-798.
doi: 10.1109/TPAMI.2009.98
|
[27] |
DUNNHOFER M, MARTINEL N, MICHELONI C. Improving MRI-based knee disorder diagnosis with pyramidal feature details[C]// Medical Imaging with Deep Learning. Lübeck, Germany: PMLR, 2021: 131-147.
|
[28] |
SHIN H, CHOI G S, SHON O J, et al. Development of convolutional neural network model for diagnosing meniscus tear using magnetic resonance image[J]. BMC Musculoskel Dis, 2022, 23(1): 1-9.
doi: 10.1186/s12891-021-04954-7
|