[1] |
SIDDIKI S M A H, RASHED M N, ALI M A, et al. Lewis acid catalysis of Nb2O5 for reactions of carboxylic acid derivatives in the presence of basic inhibitors[J]. ChemCatChem, 2019, 11(1): 383-396.
doi: 10.1002/cctc.v11.1
|
[2] |
NAKAJIMA K, BABA Y, NOMA R, et al. Nb2O5·nH2O as a heterogeneous catalyst with water-tolerant lewis acid sites[J]. J Am Chem Soc, 2011, 133(12): 4224-4227.
doi: 10.1021/ja110482r
pmid: 21370861
|
[3] |
FOO G S, WEI D, SHOLL D S, et al. Role of lewis and Brønsted acid sites in the dehydration of glycerol over niobia[J]. ACS Catal, 2014, 4(9): 3180-3192.
doi: 10.1021/cs5006376
|
[4] |
NAKAJIMA K, HIRATA J, KIM M, et al. Facile formation of lactic acid from a triose sugar in water over niobium oxide with a deformed orthorhombic phase[J]. ACS Catal, 2018, 8(1): 283-290.
doi: 10.1021/acscatal.7b03003
|
[5] |
RECHE M T, OSATIASHTIANI A, DURNDELL L J, et al. Niobic acid nanoparticle catalysts for the aqueous phase transformation of glucose and fructose to 5-hydroxymethylfurfural[J]. Catal Sci Technol, 2016, 6(19): 7334-7341.
doi: 10.1039/C6CY01129B
|
[6] |
KREISSL H T, NAKAGAWA K, PENG Y-K, et al. Niobium oxides: Correlation of acidity with structure and catalytic performance in sucrose conversion to 5-hydroxymethylfurfural[J]. J Catal, 2016, 338: 329-339.
doi: 10.1016/j.jcat.2016.03.007
|
[7] |
TAKAGAKI A, LU D, KONDO J N, et al. Exfoliated HNb3O8 nanosheets as a strong protonic solid acid[J]. Chem Mater, 2005, 17(10): 2487-2489.
doi: 10.1021/cm047990y
|
[8] |
PETRE A L, PERDIGÓN-MELÓN J A, GERVASINI A, et al. Characterization and reactivity of group III oxides supported on niobium oxide[J]. Catal Today, 2003, 78(1): 377-386.
doi: 10.1016/S0920-5861(02)00300-0
|
[9] |
TAKAHASHI K, ISOBE S, OHNUKI S. H2 dissociation over NbO: the first step toward hydrogenation of Mg[J]. Langmuir, 2013, 29(38): 12059-12065.
doi: 10.1021/la402565b
|
[10] |
FERNÁNDEZ-ARROYO A, DELGADO D, DOMINE M E, et al. Upgrading of oxygenated compounds present in aqueous biomass-derived feedstocks over NbOx-based catalysts[J]. Catal Sci Technol, 2017, 7(23): 5495-5499.
doi: 10.1039/C7CY00916J
|
[11] |
ZHUANG X J, XIA Q N, WANG Y Q, et al. Hydrodeoxygenation of butyric acid at multi-functional Nb2O5 catalyst: a density functional theory study[J]. Int J Hydrog Energy, 2016, 41(41): 18502-18508.
doi: 10.1016/j.ijhydene.2016.08.220
|
[12] |
PINTO M B, SOARES A L, JR QUINTãO M C, et al. Unveiling the structural and electronic properties of the B-Nb2O5 surfaces and their interaction with H2O and H2O2[J]. J Phys Chem C, 2018, 122(12): 6618-6628.
doi: 10.1021/acs.jpcc.7b11972
|
[13] |
SU K, LIU H, GAO Z, et al. Nb2O5-based photocatalysts[J]. Adv Sci, 2021, 8(8): 2003156.
doi: 10.1002/advs.v8.8
|
[14] |
FURUKAWA S, OHNO Y, SHISHIDO T, et al. Selective amine oxidation using Nb2O5 photocatalyst and O2[J]. ACS Catal, 2011, 1(10): 1150-1153.
doi: 10.1021/cs200318n
|
[15] |
FURUKAWA S, SHISHIDO T, TERAMURA K, et al. Selective aerobic oxidation of primary alcohols to aldehydes over Nb2O5 photocatalyst with visible light[J]. ChemPhysChem, 2014, 15(13): 2665-2667.
doi: 10.1002/cphc.v15.13
|
[16] |
TAMAI K, MURAKAMI K, HOSOKAWA S, et al. Visible-light selective photooxidation of aromatic hydrocarbons via ligand-to-metal charge transfer transition on Nb2O5[J]. J Phys Chem C, 2017, 121(41): 22854-22861.
doi: 10.1021/acs.jpcc.7b07339
|
[17] |
ZHAO Y, ELEY C, HU J, et al. Shape-dependent acidity and photocatalytic activity of Nb2O5 nanocrystals with an active TT (001) surface[J]. Angew Chem Int Ed, 2012, 51(16): 3846-3849.
doi: 10.1002/anie.v51.16
|
[18] |
MOKRUSHIN A S, SIMONENKO T L, SIMONENKO N P, et al. Chemoresistive gas-sensing properties of highly dispersed Nb2O5 obtained by programmable precipitation[J]. J Alloys Compd, 2021, 868159090.
|
[19] |
YAN C, XUE D. Formation of Nb2O5 nanotube arrays through phase transformation[J]. Adv Mater, 2008, 20(5): 1055-1058.
doi: 10.1002/adma.v20:5
|
[20] |
ONG G K, SAEZ CABEZAS C A, DOMINGUEZ M N, et al. Electrochromic niobium oxide nanorods[J]. Chem Mater, 2020, 32(1): 468-475.
doi: 10.1021/acs.chemmater.9b04061
|
[21] |
TOKIO I, KAZUHARU O, KOZO T. Acidic and catalytic properties of niobium pentaoxide[J]. B Chem Soc Jpn, 1983, 56(10): 2927-2931.
doi: 10.1246/bcsj.56.2927
|
[22] |
FUCHIGAMI T, KURODA M, NAKAMURA S, et al. Spiky-shaped niobium pentoxide nano-architecture: highly stable and recoverable Lewis acid catalyst[J]. Nanotechnology, 2020, 31(32): 325705.
doi: 10.1088/1361-6528/ab8cf3
|
[23] |
TAKENAKA S, MIYAKE S, UWAI S, et al. Preparation of metal oxide nanofilms using graphene oxide as a template[J]. J Phys Chem C, 2015, 119(22): 12445-12454.
doi: 10.1021/acs.jpcc.5b02447
|
[24] |
ABDELHAMID A A, YU Y, YANG J, et al. Generalized synthesis of metal oxide nanosheets and their application as Li-ion battery anodes[J]. Adv Mater, 2017, 29(32): 1701427.
doi: 10.1002/adma.v29.32
|
[25] |
WEN P, AI L, LIU T, et al. Hydrothermal topological synthesis and photocatalyst performance of orthorhombic Nb2O5 rectangle nanosheet crystals with dominantly exposed (010) facet[J]. Mater Design, 2017, 117: 346-352.
|
[26] |
DING S, WANG R, ZHANG P, et al. Synthesis and visible-light photocatalytic performance of C-doped Nb2O5 with high surface area[J]. Chem Res Chinese U, 2018, 34(2): 274-278.
doi: 10.1007/s40242-018-7260-9
|
[27] |
ALI R F, NAZEMI A H, GATES B D. Surfactant controlled growth of niobium oxide nanorods[J]. Cryst Growth Des, 2017, 17(9): 4637-4646.
doi: 10.1021/acs.cgd.7b00500
|
[28] |
MOLINA M J C, GRANADOS M L, GERVASINI A, et al. Exploitment of niobium oxide effective acidity for xylose dehydration to furfural[J]. Catal Today, 2015, 254: 90-98.
doi: 10.1016/j.cattod.2015.01.018
|
[29] |
ZHAO W, ZHAO W, ZHU G, et al. Black Nb2O5 nanorods with improved solar absorption and enhanced photocatalytic activity[J]. Dalton T, 2016, 45(9): 3888-3894.
doi: 10.1039/C5DT04578A
|
[30] |
DE MORAES N P, SILVA F N, DA SILVA M L C P, et al. Methylene blue photodegradation employing hexagonal prism-shaped niobium oxide as heterogeneous catalyst: Effect of catalyst dosage, dye concentration, and radiation source[J]. Mater Chem Phys, 2018, 214: 95-106.
doi: 10.1016/j.matchemphys.2018.04.063
|
[31] |
GAO B, FU J, HUO K, et al. Quasi-aligned Ag-Nb2O5 nanobelt arrays with enhanced photocatalytic and antibacterial activities[J]. J Am Ceram Soc, 2011, 94(8): 2330-2338.
doi: 10.1111/jace.v94.8
|
[32] |
DO PRADO N T, OLIVEIRA L C A. Nanostructured niobium oxide synthetized by a new route using hydrothermal treatment: High efficiency in oxidation reactions[J]. Appl Catal B-Environ, 2017, 205: 481-488.
doi: 10.1016/j.apcatb.2016.12.067
|
[33] |
LOPES O F, PARIS E C, RIBEIRO C. Synthesis of Nb2O5 nanoparticles through the oxidant peroxide method applied to organic pollutant photodegradation: a mechanistic study[J]. Appl Catal B-Environ, 2014, 144: 800-808.
doi: 10.1016/j.apcatb.2013.08.031
|
[34] |
MURAYAMA T, CHEN J, HIRATA J, et al. Hydrothermal synthesis of octahedra-based layered niobium oxide and its catalytic activity as a solid acid[J]. Catal Sci Technol, 2014, 4(12): 4250-4257.
doi: 10.1039/C4CY00713A
|
[35] |
WOLINSKI K, HINTON J F, PULAY P. Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations[J]. J Am Chem Soc, 1990, 112(23): 8251-8260.
doi: 10.1021/ja00179a005
|
[36] |
FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 09, Revision D.01[CP]. Gaussian, Inc., Wallingford, CT, 2013.
|
[37] |
XIAO T C, AN L D, WANG H L, et al. Effect of aging time and silicon source on the structure and template states of SAPO-5 molecular sieves[J]. Chinese J Magn Reson, 1995, 12(2): 147-154.
|
|
肖天存, 安立敦, 王弘立, 等. 晶化时间及硅源对SAPO-5分子筛的结构及模板剂状态的影响[J]. 波谱学杂志, 1995, (2): 147-154.
|
[38] |
LIU X C, HAN X W, TAN J, et al. The studies on the crystallization procedure of SAPO-34 molecular sieves by MAS NMR[J]. Chinese J Magn Reson, 1998, (5): 61-64.
|
|
刘宪春, 韩秀文, 谭涓, 等. SAPO-34分子筛晶化过程的MAS NMR研究[J]. 波谱学杂志, 1998, (5): 61-64.
|
[39] |
XU J, DENG F. NMR studies on solid acids and crystallization of molecular sieves[J]. Chinese J Magn Reson, 2007, (3): 368-370.
|
|
徐君, 邓风. 固体酸催化剂及分子筛晶化过程的核磁共振研究[J]. 波谱学杂志, 2007, (3): 368-370.
|
[40] |
PAPULOVSKIY E, KIRIK S D, KHABIBULIN D F, et al. Condensation of ammonium niobium oxalate studied by NMR crystallography and X-ray powder diffraction[J]. Catal Today, 2020, 354: 26-35.
doi: 10.1016/j.cattod.2019.01.072
|
[41] |
YI X, LIU K, CHEN W, et al. Origin and structural characteristics of tri-coordinated extra-framework aluminum species in dealuminated zeolites[J]. J Am Chem Soc, 2018, 140(34): 10764-10774.
doi: 10.1021/jacs.8b04819
pmid: 30070481
|
[42] |
YI X, KO H-H, DENG F, et al. Solid-state 31P NMR mapping of active centers and relevant spatial correlations in solid acid catalysts[J]. Nat Protoc, 2020, 15(10): 3527-3555.
doi: 10.1038/s41596-020-0385-6
|
[43] |
HUANG S S, YAO Y F, LI P, et al. Quantum chemical calculation and simulation of HSQC experiments in liquid-state NMR[J]. Chinese J Magn Reson, 2021, 38(1): 32-42.
|
|
黄珊珊, 姚叶锋, 李鹏, 等. 液体核磁共振HSQC实验的量子化学计算与模拟[J]. 波谱学杂志, 2021, 38(1): 32-42.
|
[44] |
CHEN H D, KONG H Y, ZHAO Z C, et al. Exploring the Na+ locations and Al distributions in SSZ-39 zeolite by solid-state NMR spectroscopy and DFT calculations[J]. Chinese J Magn Reson, 2021, 38(4): 543-551.
|
|
陈翰迪, 孔海宇, 赵侦超, 等. 固体核磁共振结合密度泛函理论计算研究SSZ-39分子筛的钠离子落位与铝分布[J]. 波谱学杂志, 2021, 38(4): 543-551.
|
[45] |
BIASIN E, NASCIMENTO D R, POULTER B I, et al. Revealing the bonding of solvated Ru complexes with valence-to-core resonant inelastic X-ray scattering[J]. Chem Sci, 2021, 12(10): 3713-3725.
doi: 10.1039/d0sc06227h
pmid: 34163645
|
[46] |
OLIVEIRA V, CREMER D. Transition from metal-ligand bonding to halogen bonding involving a metal as halogen acceptor a study of Cu, Ag, Au, Pt, and Hg complexes[J]. Chem Phys Lett, 2017, 681: 56-63.
doi: 10.1016/j.cplett.2017.05.045
|
[47] |
SOUTH C, SCHOENDORFF G, WILSON A K. Dissociation energy and electronic structure of the low valent lanthanide compound NdF+[J]. Int J Quantum Chem, 2016, 116(10): 791-794.
doi: 10.1002/qua.v116.10
|