波谱学杂志 ›› 2023, Vol. 40 ›› Issue (2): 207-219.doi: 10.11938/cjmr20223034
收稿日期:
2022-11-14
出版日期:
2023-06-05
在线发表日期:
2023-02-16
通讯作者:
黄敏
E-mail:minhuang@mail.scuec.edu.cn
基金资助:
HUANG Min1,2,*(),LI Siyi1,CHEN Junbo1,2,ZHOU Dao1,2
Received:
2022-11-14
Published:
2023-06-05
Online:
2023-02-16
Contact:
HUANG Min
E-mail:minhuang@mail.scuec.edu.cn
摘要:
磁共振指纹(magnetic resonance fingerprinting,MRF)是一种革新性的快速定量磁共振新技术,本文在成像技术和临床应用两个层面对MRF进行了综述. 在成像技术方面,主要从数据采集、字典建立,以及传统量化框架到深度学习量化框架的模式识别这3个步骤进行论述,分析存在的技术难点. 然后对MRF在人体重要部位的临床应用进行了总结,介绍了MRF技术在重复性和再现性方面的验证现状. 最后,本文分析了MRF走向临床存在的各种技术挑战及障碍,对MRF技术未来的发展方向进行了展望.
中图分类号:
黄敏,李思怡,陈军波,周到. 磁共振指纹成像技术及临床应用的进展[J]. 波谱学杂志, 2023, 40(2): 207-219.
HUANG Min,LI Siyi,CHEN Junbo,ZHOU Dao. Progress of Magnetic Resonance Fingerprinting Technology and Its Clinical Application[J]. Chinese Journal of Magnetic Resonance, 2023, 40(2): 207-219.
[1] |
PANDA A, MEHTA B B, COPPO S, et al. Magnetic resonance fingerprinting-An overview[J]. Curr Opin Biomed Eng, 2017, 3: 56-66.
doi: 10.1016/j.cobme.2017.11.001 pmid: 29868647 |
[2] |
MA D, GULANI V, SEIBERLICH N, et al. Magnetic resonance fingerprinting[J]. Nature, 2013, 495: 187-192.
doi: 10.1038/nature11971 |
[3] |
BIPIN MB, COPPO S, FRANCES M D, et al. Magnetic resonance fingerprinting: a technical review[J]. Magn Reson Med, 2019, 81: 25-46.
doi: 10.1002/mrm.27403 pmid: 30277265 |
[4] |
MCGIVNEY D F, BOYACIOGLU R, JIANG Y, et al. Magnetic resonance fingerprinting review part 2: technique and directions[J]. J Magn Reson Imaging, 2020, 51(4): 993-1007.
doi: 10.1002/jmri.26877 pmid: 31347226 |
[5] |
LI M, DONG Z C, ZHANG X W. Magnetic resonance fingerprinting imaging technology and its progress[J]. Scientia Sinica Vitae, 2019, 49(1): 28-40.
doi: 10.1360/N052018-00070 |
李敏, 董正超, 张学武, 等. 磁共振指纹成像技术及其最新进展[J]. 中国科学: 生命科学, 2019, 49(1): 28-40.
doi: 10.1360/N052018-00070 |
|
[6] | DENG W, LI X H. Research progress of cardiac magnetic resonance fingerprint technology[J]. Int J Med Radiol, 2022, 45(2): 189-191+204. |
邓炜, 李小虎. 心脏磁共振指纹技术研究进展[J]. 国际医学放射学杂志, 2022, 45(2): 189-191+204. | |
[7] |
JIANG Y, MA D, GRISWOLD M, et al. mr fingerprinting using fast imaging with steady state precession (FISP) with spiral readout[J]. Magn Reson Med, 2015, 74(6): 1621-1631.
doi: 10.1002/mrm.25559 pmid: 25491018 |
[8] |
BUONINCONTRI G, SAWIAK S J. MR fingerprinting with simultaneous B1 estimation[J]. Magn Reson Med, 2016, 76(4): 1127-1135.
doi: 10.1002/mrm.26009 pmid: 26509746 |
[9] |
RIEGER B, ZIMMER F, ZAPP J, et al. Magnetic resonance fingerprinting using echo-planar imaging: joint quantification of T1 and T2* relaxation times[J]. Magn Reson Med, 2017, 78(5): 1724-1733.
doi: 10.1002/mrm.26561 |
[10] |
KARA D, FAN M, HAMILTON J, et al. Parameter map error due to normal noise and aliasing artifacts in MR fingerprinting[J]. Magn Reson Med, 2019, 81: 3108-3123.
doi: 10.1002/mrm.27638 pmid: 30671999 |
[11] |
SOMMER K, AMTHOR T, DONEVA M, et al. Towards predicting the encoding capability of MR fingerprinting sequences[J]. Magn Reson Imaging, 2017, 41: 7-14.
doi: S0730-725X(17)30118-2 pmid: 28684268 |
[12] |
ZHAO B, HALDAR J P, CONGYU L, et al. Optimal experiment design for magnetic resonance fingerprinting: Cramer-Rao bound meets spin dynamics[J]. IEEE Trans Med Imaging, 2019, 38: 844-861.
doi: 10.1109/TMI.2018.2873704 |
[13] | HEESTERBEEK D G J, KOOLSTRA K, OSCH M J P, et al. Sequence optimization mitigating undersampling errors in magnetic resonance fingerprinting[C]// Joint Annual Meeting ISMRM-ESMRMB ISMRT 31st Annual Meeting, London, UK, 2022, 0561. |
[14] | JORDAN S P, HU S Y, ROZADA I, et al. Automated design of pulse sequences for magnetic resonance fingerprinting using physics-inspired optimization[J]// Proc Natl Acad Sci U S A, 2021, 118(40): e2020516118. |
[15] | SUBASHI E, YU V, COHEN O, et al. Motion-robust free-breathing abdominal MR fingerprinting (MRF) using radial acquisition and temporal compressed sensing reconstruction: initial results[J]. Medical Physics, 2021, 48(6): 25-29. |
[16] | YANG M, JIANG Y, MA D, et al. Game of learning bloch equation simulations for mr fingerprinting[OL]. ArXiv, 2020, https://arxiv.org/abs/2004.02270. |
[17] |
VELASCO C, FLETCHER T J, BOTNAR R M, et al. Artificial intelligence in cardiac magnetic resonance fingerprinting[J]. Front Cardiovasc Med, 2022, 9: 1009131.
doi: 10.3389/fcvm.2022.1009131 |
[18] |
SAYBASILI H, GRISWOLD M A, MA D, et al. SVD compression for magnetic resonance fingerprinting in the time domain[J]. IEEE Trans Med Imaging, 2014, 33(12): 2311-2322.
doi: 10.1109/TMI.2014.2337321 |
[19] |
MA D, MCGIVNEY D, GRISWOLD M A, et al. Low rank approximation methods for MR fingerprinting with large scale dictionaries[J]. Magn Reson Med, 2018, 79(4): 2392-2400.
doi: 10.1002/mrm.26867 pmid: 28804918 |
[20] |
MA D, WALD L L, GRISWOLD M A, et al. Fast group matching for MR fingerprinting reconstruction[J]. Magn Reson Med, 2015, 74(2): 523-528.
doi: 10.1002/mrm.25439 pmid: 25168690 |
[21] |
CHRISTOPHER C C, XIAO C, BORIS M, et al. AIR-MRF: Accelerated iterative reconstruction for magnetic resonance fingerprinting[J], Magn Reson Imaging, 2017, 41: 29-40.
doi: S0730-725X(17)30125-X pmid: 28716682 |
[22] |
WANG Z, ZHANG J, CUI D, et al. Magnetic resonance fingerprinting using a fast dictionary searching algorithm: MRF-ZOOM[J]. IEEE Trans Biomed Eng, 2019, 66(6): 1526-1535.
doi: 10.1109/TBME.2018.2874992 pmid: 30307852 |
[23] |
CRUZ G, QI H, JAUBERT O, et al. Generalized low-rank non-rigid motion-corrected reconstruction for MR fingerprinting[J]. Magn Reson Med, 2022, 87: 746-763.
doi: 10.1002/mrm.v87.2 |
[24] |
CHEN Y, FANG Z, HUNG S C, et al. High-resolution 3D MR Fingerprinting using parallel imaging and deep learning[J]. Neuroimage, 2020, 206: 116329.
doi: 10.1016/j.neuroimage.2019.116329 |
[25] |
HOPPE E, KÖRZDÖRFER G, WÜRFL T, et al. Deep learning for magnetic resonance fingerprinting: A new approach for predicting quantitative parameter values from time series[J]. Stud Health Technol Inform, 2017, 243: 202-206.
pmid: 28883201 |
[26] |
PENG C, DI C, VINCE V, et al. Development of fast deep learning quantification for magnetic resonance fingerprinting in vivo[J]. Magn Reson Imaging, 2020, 70: 81-90.
doi: S0730-725X(19)30731-3 pmid: 32276007 |
[27] |
HAMILTON J I, CURREY D, RAJAGOPALAN S, et al. Deep learning reconstruction for cardiac magnetic resonance fingerprinting T1 and T2 mapping[J]. Magn Reson Med, 2021, 85: 2127-2135.
doi: 10.1002/mrm.v85.4 |
[28] |
COHEN O, ZHU B, ROSEN M S. MR fingerprinting deep reconstruction network (DRONE)[J]. Magn Reson Med, 2018, 80: 885-894.
doi: 10.1002/mrm.27198 pmid: 29624736 |
[29] | HOPPE E, KÖRZDÖRFER G, NITTKA M, et al. Deep learning for magnetic resonance fingerprinting: Accelerating the reconstruction of quantitative relaxation maps[C]// Proceedings of the 26th Annual Meeting of ISMRM, Paris, France, 2018: 1-5. |
[30] |
SONG P, ELDAR Y C, MAZOR G, et al. HYDRA. Hybrid deep magnetic resonance fingerprinting[J]. Med Phys. 2019, 46: 4951-4969.
doi: 10.1002/mp.v46.11 |
[31] |
BALSIGER F, JUNGO A, SCHEIDEGGER O, et al. Spatially regularized parametric map reconstruction for fast magnetic resonance fingerprinting[J]. Med Image Anal, 2020, 64: 101741.
doi: 10.1016/j.media.2020.101741 |
[32] | VIRTUE P, YU S X, LUSTIG M. Better than real: complex-valued neural nets for MRI fingerprinting[C]// IEEE International Conference on Image Processing (ICIP), 2017: 00070. |
[33] | HOPPE E, THAMM F, KÖRZDÖRFER G, et al. RinQ fingerprinting: recurrence-informed quantile networks for magnetic resonance fingerprinting[C]// Medical Image Computing and Computer Assisted Intervention-MICCAI 2019: 22nd International Conference, Shenzhen, China, 2019: 92-100. |
[34] | XU Y L, HOPPE E, SPEIER P, et al. Learning how to clean fingerprints -- deep learning based separated artefact reduction and regression for mr fingerprinting[C]// 2020 ISMRM & SMRT Virtual Conference & Exhibition, Paris, France, 2020. |
[35] |
FANG Z, CHEN Y, LIU M, et al. Deep learning for fast and spatially constrained tissue quantification from highly accelerated data in magnetic resonance fingerprinting[J]. IEEE Trans Med Imaging, 2019, 38(10): 2364-2374.
doi: 10.1109/TMI.42 |
[36] |
HSIEH J J L, SVALBE I. Magnetic resonance fingerprinting: from evolution to clinical applications[J]. J Med Radiat Sci, 2020, 67(4): 333-344.
doi: 10.1002/jmrs.v67.4 |
[37] |
BADVE C, YU A, DASTMALCHIAN S, et al. MR fingerprinting of adult brain tumors: Initial experience[J]. AJNR Am J Neuroradiol, 2017, 38 (3): 492-499.
doi: 10.3174/ajnr.A5035 |
[38] |
MA D, JONES S E, DESHMANE A, et al. Development of high-resolution 3D MR fingerprinting for detection and characterization of epileptic lesions[J]. J Magn Reson Imaging, 2019, 49(5): 1333-1346.
doi: 10.1002/jmri.26319 pmid: 30582254 |
[39] |
CHEN Y, JIANG Y, PAHWA S, et al. MR fingerprinting for rapid quantitative abdominal imaging[J]. Radiology, 2016, 279(1): 278-286.
doi: 10.1148/radiol.2016152037 pmid: 26794935 |
[40] |
CHEN Y, PANDA A, PAHWA S, et al. Three-dimensional MR fingerprinting for quantitative breast imaging[J]. Radiology, 2019, 290(1): 33-40.
doi: 10.1148/radiol.2018180836 pmid: 30375925 |
[41] |
CAO X, LIAO C, LYER S S, et al. Optimized multi-axis spiral projection MR fingerprinting with subspace reconstruction for rapid whole-brain high-isotropic-resolution quantitative imaging[J]. Magn Reson Med, 2022, 88(1): 133-150.
doi: 10.1002/mrm.29194 pmid: 35199877 |
[42] |
LIAO C, WANG K, CAO X, et al. Detection of lesions in mesial temporal lobe epilepsy by using MR fingerprinting[J]. Radiology, 2018, 288: 804-812.
doi: 10.1148/radiol.2018172131 pmid: 29916782 |
[43] | RIEL M V, YU Z, HODONO S, et al. Free-breathing abdominal T1 mapping using an optimized MR fingerprinting sequence[J]. NMR Biomed, 2021, 34(7): e4531. |
[44] |
JAUBERT O, ARRIETA C, CRUZ G, et al. Multi-parametric liver tissue characterization using MR fingerprinting: Simultaneous T1, T2, T2*, and fat fraction mapping[J]. Magn Reson Med, 2020, 84(5): 2625-2635.
doi: 10.1002/mrm.v84.5 |
[45] |
SERRAO E M, KESSLER D A, CARMO B, et al. Magnetic resonance fingerprinting of the pancreas at 1.5 T and 3.0 T[J]. Sci Rep, 2020, 10: 17563.
doi: 10.1038/s41598-020-74462-6 |
[46] |
NOLTE T, SCHOLTEN H, GROSS N, et al. Confounding factors in breast magnetic resonance fingerprinting: B1+, slice profile, and diffusion effects[J]. Magn Reson Med, 2021, 85(4): 1865-1880.
doi: 10.1002/mrm.v85.4 |
[47] |
ECK B L, FLAMM S D, KWON D H, et al. Cardiac magnetic resonance fingerprinting: trends in technical development and potential clinical applications[J]. Prog Nucl Magn Reson Spectrosc, 2021, 122: 11-22.
doi: 10.1016/j.pnmrs.2020.10.001 |
[48] |
LIU Y, HAMILTON J, RAJAGOPALAN S, et al. Cardiac magnetic resonance fingerprinting: technical overview and initial results[J]. JACC Cardiovasc Imaging, 2018, 11: 1837-1853.
doi: S1936-878X(18)30833-7 pmid: 30522686 |
[49] |
HAMILTON J I, JIANG Y, CHEN Y, et al. MR fingerprinting for rapid quantification of myocardial T1, T2, and proton spin density[J]. Magn Reson Med, 2017, 77: 1446-1458.
doi: 10.1002/mrm.v77.4 |
[50] | HAMILTON J I, JIANG Y, MA D, et al. Simultaneous multislice cardiac magnetic resonance fingerprinting using low rank reconstruction[J]. NMR Biomed, 2019, 32: e4041. |
[51] |
HAMILTON J I, PAHWA S, ADEDIGBA J, et al. Simultaneous mapping of T1 and T2 using cardiac magnetic resonance fingerprinting in a cohort of healthy subjects at 1.5T[J]. J Magn Reson Imaging, 2020, 52: 1044-1052.
doi: 10.1002/jmri.v52.4 |
[52] |
VELASCO C, FLETCHER T J, BOTNAR R M, et al. Artificial intelligence in cardiac magnetic resonance fingerprinting[J]. Front Cardiovasc Med, 2022, 9: 1009131
doi: 10.3389/fcvm.2022.1009131 |
[53] |
JAUBERT O, CRUZ G, BUSTIN A, et al. Free-running cardiac magnetic resonance fingerprinting: joint T1/T2 map and cine imaging[J]. Magn Reson Imaging, 2020, 68: 173-182.
doi: 10.1016/j.mri.2020.02.005 |
[54] | CRUZ G, JAUBERT O, QI H, et al. 3D free-breathing cardiac magnetic resonance fingerprinting[J]. NMR Biomed, 2020, 33: e4370. |
[55] |
BARKHOF F, PARKER G J M. Reproducing Fingerprints: a step toward clinical adoption[J]. Radiology, 2019, 292: 438-439.
doi: 10.1148/radiol.2019191146 pmid: 31211635 |
[56] |
KEENAN K E, JIANG Y, MA D, et al. Repeatability of magnetic resonance fingerprinting T1 and T2 estimates assessed using the ISMRM/NIST MRI system phantom[J]. Magn Reson Med, 2017, 78(4): 1452-1457.
doi: 10.1002/mrm.26509 |
[57] |
KÖRZDÖRFER G, KIRSCH R, LIU K, et al. Reproducibility and repeatability of MR fingerprinting relaxometry in the human brain[J]. Radiology, 2019, 292: 429-437.
doi: 10.1148/radiol.2019182360 pmid: 31210615 |
[58] |
YOKOTA Y, OKADA T, FUSHIMI Y, et al. Acceleration of 2D-MR fingerprinting by reducing the number of echoes with increased in-plane resolution: a volunteer study[J]. Magn Reson Mater Phy, 2020, 33: 783-791.
doi: 10.1007/s10334-020-00842-8 |
[59] |
BUONINCONTRI G, BIAGI L, RETICO A, et al. Multi-site repeatability and reproducibility of MR fingerprinting of the healthy brain at 1.5 and 3.0 T[J]. NeuroImage, 2019, 195: 362-372.
doi: 10.1016/j.neuroimage.2019.03.047 |
[60] |
BUONINCONTRI G, KURZAWSKI J W, KAGGIE J D, et al. Three dimensional MRF obtains highly repeatable and reproducible multi-parametric estimations in the healthy human brain at 1.5 T and 3 T[J]. NeuroImage, 2021, 226: 117573.
doi: 10.1016/j.neuroimage.2020.117573 |
[61] | WANG Z Y, WANG Y S, MAO J L, et al. Magnetic resonance images segmentation of synovium based on Dense-UNet++[J]. Chinese J Magn Reson, 2022, 39(2): 208-219. |
王振宇, 王颖珊, 毛瑾玲, 等. 基于Dense-UNet++的关节滑膜磁共振图像分割[J]. 波谱学杂志, 2022, 39(2): 208-219. | |
[62] | YANG Q, WANG Z, GUO K, et al. Physics-driven synthetic data learning for biomedical magnetic resonance[J]. IEEE Signal Process Mag, 2022, https://doi.org/10.48550/arXiv.2203.11178. |
[1] | 周敏雄, 张会婷, 王一达, 杨光, 姚旭峰, 高安康, 程敬亮, 白洁, 严序. 数据采集方案对神经扩散模型影响的评估[J]. 波谱学杂志, 2022, 39(2): 220-229. |
[2] | 汪红志, 施群雁, 苗志英, 陈珊珊, 夏天. MRISim:磁共振成像仿真实验软件包[J]. 波谱学杂志, 2019, 36(2): 225-237. |
[3] | 崔妍, 肖亮. 磁共振成像谱仪B0信号的高精度发生与测试[J]. 波谱学杂志, 2018, 35(2): 170-177. |
[4] | 姜阳明, 邹云云, 黄滔, 陈艳, 潘卫东, 豪富华, 张建新. 杜仲的核磁共振指纹图谱研究[J]. 波谱学杂志, 2017, 34(4): 453-464. |
[5] | 郭新宇, 肖亮. 基于数据采集卡和GPU的MRI信号接收设计[J]. 波谱学杂志, 2016, 33(4): 581-589. |
[6] | 陈朴, 于燕波, 黄贱英, 李红毅, 董海胜, 陈斌. 运动员与体力劳动者代谢组学判别模型的建立[J]. 波谱学杂志, 2016, 33(3): 395-405. |
[7] | 丁国辉1,2,4,孙建强1,2,4,吴俊芳1,2,3,黄慎 1,2,4,丁义明1,2. L 1 范数支持向量机在代谢组学中的应用[J]. 波谱学杂志, 2015, 32(1): 67-77. |
[8] | 袁清泉,郭俊旺,丛建波,董国福,马蕾,吴可*. 在体剂量检测专用EPR数据采集与控制系统[J]. 波谱学杂志, 2013, 30(3): 354-360. |
[9] | 赵秀举, 王玉兰. 代谢组NMR分析与药物毒理研究[J]. 波谱学杂志, 2011, 28(1): 1-17. |
[10] | 毛璇, 张冬娟, 管又飞, 颜贤忠. Ⅱ型糖尿病肾病小鼠肾水提物代谢组学研究[J]. 波谱学杂志, 2010, 27(4): 532-539. |
[11] | 吕 娟,单 璐,涂光忠. TopSpin核磁共振软件中集成的DOSY采集/处理模块DOSYmTM[J]. 波谱学杂志, 2008, 25(1): 133-143. |
[12] | 谢海滨*,李建奇,杨光,李鲠颖. 基于NMR谱仪的医学MRI软件系统[J]. 波谱学杂志, 2007, 24(4): 454-461. |
[13] | 陈波,康海宁,韩超,王小如. NMR指纹图谱与模式识别方法[J]. 波谱学杂志, 2006, 23(3): 397-407. |
[14] | 陈波, 张巍, 康海宁, 邓志威, 王小如. 茶叶的1H NMR指纹图谱研究[J]. 波谱学杂志, 2006, 23(2): 169-180. |
[15] | 邱玉洁, 夏圣安, 叶朝辉, 刘买利. 生物医学核磁共振中的模式识别方法[J]. 波谱学杂志, 2005, 22(1): 99-111. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||