[1] |
WRIGLEY P J, GUSTIN S M, MACEY P M, et al. Anatomical changes in human motor cortex and motor pathways following complete thoracic spinal cord injury[J]. Cereb Cortex, 2009, 19(1): 224-232.
doi: 10.1093/cercor/bhn072
pmid: 18483004
|
[2] |
ILVESMäKI T, KOSKINEN E, BRANDER A, et al. Spinal cord injury induces widespread chronic changes in cerebral white matter[J]. Hum Brain Mapp, 2017, 38(7): 3637-3647.
doi: 10.1002/hbm.23619
pmid: 28429407
|
[3] |
HE G, QIAN J. Phase imaging of axonal integrity of cranial corticospinal tract in experimental spinal cord injury at 9.4T[J]. Microsc Res Tech, 2017, 80(9): 1009-1017.
doi: 10.1002/jemt.v80.9
|
[4] |
COHEN-ADAD J, EL MENDILI M M, LEHéRICY S, et al. Demyelination and degeneration in the injured human spinal cord detected with diffusion and magnetization transfer MRI[J]. Neuroimage, 2011, 55(3): 1024-1033.
doi: 10.1016/j.neuroimage.2010.11.089
|
[5] |
MOXON K A, OLIVIERO A, AGUILAR J, et al. Cortical reorganization after spinal cord injury: always for good?[J]. Neuroscience, 2014, 283: 78-94.
doi: 10.1016/j.neuroscience.2014.06.056
pmid: 24997269
|
[6] |
JURKIEWICZ M T, MIKULIS D J, MCILROY W E, et al. Sensorimotor cortical plasticity during recovery following spinal cord injury: a longitudinal fMRI study[J]. Neurorehabil Neural Repair, 2007, 21(6): 527-538.
doi: 10.1177/1545968307301872
|
[7] |
FASSETT H J, TURCO C V, EL-SAYES J, et al. Alterations in Motor Cortical representation of muscles following incomplete spinal cord injury in humans[J]. Brain Sci, 2018, 8(12).
|
[8] |
WANG L, CHEN N. MRI research progresses of motor imagery on brain activity and network reorganization in patients with spinal cord injury[J]. Chin J Med Imaging Technol, 2019, 35(10):1586-1589.
|
|
王玲, 陈楠. 运动想象对脊髓损伤患者大脑活动和脑网络重塑MR研究进展[J]. 中国医学影像技术, 2019, 35(10): 1586-1589.
|
[9] |
TSUJIOKA H, YAMASHITA T. Neural circuit repair after central nervous system injury[J]. Int Immunol, 2021, 33(6): 301-309.
doi: 10.1093/intimm/dxaa077
pmid: 33270108
|
[10] |
LIU J, YANG X, JIANG L, et al. Neural plasticity after spinal cord injury[J]. Neural Regen Res, 2012, 7(5): 386-391.
doi: 10.3969/j.issn.1673-5374.2012.05.010
pmid: 25774179
|
[11] |
YU S, YAO S, WEN Y, et al. Angiogenic microspheres promote neural regeneration and motor function recovery after spinal cord injury in rats[J]. Sci Rep, 2016, 6: 33428.
doi: 10.1038/srep33428
pmid: 27641997
|
[12] |
POTENTE M, GERHARDT H, CARMELIET P. Basic and therapeutic aspects of angiogenesis[J]. Cell, 2011, 146(6): 873-887.
doi: 10.1016/j.cell.2011.08.039
pmid: 21925313
|
[13] |
LI X, LI M, TIAN L, et al. Reactive astrogliosis: implications in spinal cord injury progression and therapy[J]. Oxid Med Cell Longev, 2020, 2020: 9494352.
|
[14] |
SHIMAMURA M, SATO N, SATA M, et al. Expression of hepatocyte growth factor and c-Met after spinal cord injury in rats[J]. Brain Res, 2007, 1151: 188-194.
pmid: 17425951
|
[15] |
NAKAMURA T, MIZUNO S. The discovery of hepatocyte growth factor (HGF) and its significance for cell biology, life sciences and clinical medicine[J]. Proc Jpn Acad Ser B Phys Biol Sci, 2010, 86(6): 588-610.
doi: 10.2183/pjab.86.588
|
[16] |
KITAMURA K, IWANAMI A, NAKAMURA M, et al. Hepatocyte growth factor promotes endogenous repair and functional recovery after spinal cord injury[J]. J Neurosci Res, 2007, 85(11): 2332-2342.
pmid: 17549731
|
[17] |
CHRISTOFORIDIS G A, YANG M, KONTZIALIS M S, et al. High resolution ultra high field magnetic resonance imaging of glioma microvascularity and hypoxia using ultra-small particles of iron oxide[J]. Invest Radiol, 2009, 44(7): 375-383.
doi: 10.1097/RLI.0b013e3181a8afea
pmid: 19448552
|
[18] |
XU C, SCHMIDT W U, VILLRINGER K, et al. Vessel size imaging reveals pathological changes of microvessel density and size in acute ischemia[J]. J Cereb Blood Flow Metab, 2011, 31(8): 1687-1695.
doi: 10.1038/jcbfm.2011.38
|
[19] |
XU X, MENG T, WEN Q, et al. Dynamic changes in vascular size and density in transgenic mice with Alzheimer's disease[J]. Aging (Albany NY), 2020, 12(17): 17224-17234.
|
[20] |
JIANG J J, ZHAO L Y, WANG C Y, et al. Initial application of magnetic resonance vessel size imaging in cerebral glioma and meningioma[J]. Radiol Practic, 2014, 29(7): 770-773.
|
|
江晶晶, 赵凌云, 王承缘, 等. 磁共振血管大小成像在脑胶质瘤和脑膜瘤中的初步应用[J]. 放射学实践, 2014, 29(7): 770-773.
|
[21] |
IELACQUA G D, SCHLEGEL F, FüCHTEMEIER M, et al. Magnetic resonance Q mapping reveals a decrease in microvessel density in the arcAβ mouse model of cerebral amyloidosis[J]. Front Aging Neurosci, 2015, 7: 241.
doi: 10.3389/fnagi.2015.00241
pmid: 26834622
|
[22] |
LEMASSON B, VALABLE S, FARION R, et al. In vivo imaging of vessel diameter, size, and density: a comparative study between MRI and histology[J]. Magn Reson Med, 2013, 69(1): 18-26.
doi: 10.1002/mrm.24218
pmid: 22431289
|
[23] |
HOL E M, PEKNY M. Glial fibrillary acidic protein (GFAP) and the astrocyte intermediate filament system in diseases of the central nervous system[J]. Curr Opin Cell Biol, 2015, 32: 121-130.
doi: 10.1016/j.ceb.2015.02.004
pmid: 25726916
|
[24] |
RAZAVI S M, YAHYAABADI R. Comparative study of correlation between angiogenesis markers (CD31) and Ki67 marker with behavior of aggressive and nonaggressive central giant cell granuloma with immunohistochemistry technique[J]. Asian Pac J Cancer Prev, 2018, 19(8): 2279-2283.
|
[25] |
RAMU J, BOCKHORST K H, MOGATADAKALA K V, et al. Functional magnetic resonance imaging in rodents: Methodology and application to spinal cord injury[J]. J Neurosci Res, 2006, 84(6): 1235-1244.
pmid: 16941500
|
[26] |
SHEN Y M, ZHENG W L, CHENG Y-C N, et al. USPIO high resolution neurovascular imaging in a rat stroke model of transient middle cerebral artery occlusion[J]. Chinese J Magn Reson, 2014, 31(1): 20-31.
|
|
沈伊民, 郑伟丽, CHENG Y-C N, 等. 大鼠中风模型的超小氧化铁粒子神经血管成像[J]. 波谱学杂志, 2014, 31(1): 20-31.
|
[27] |
JIRJIS M B, VEDANTAM A, BUDDE M D, et al. Severity of spinal cord injury influences diffusion tensor imaging of the brain[J]. J Magn Reson Imaging, 2016, 43(1): 63-74.
doi: 10.1002/jmri.24964
pmid: 26094789
|
[28] |
LIDDELOW S A, BARRES B A. Reactive astrocytes: production, function, and therapeutic potential[J]. Immunity, 2017, 46(6): 957-967.
doi: S1074-7613(17)30234-0
pmid: 28636962
|
[29] |
SOFRONIEW M V. Reactive astrocytes in neural repair and protection[J]. Neuroscientist, 2005, 11(5): 400-407.
doi: 10.1177/1073858405278321
pmid: 16151042
|
[30] |
OKADA S, HARA M, KOBAYAKAWA K, et al. Astrocyte reactivity and astrogliosis after spinal cord injury[J]. Neurosci Res, 2018, 126: 39-43.
doi: S0168-0102(17)30592-8
pmid: 29054466
|
[31] |
HUSSEIN R K, MENCIO C P, KATAGIRI Y, et al. Role of chondroitin sulfation following spinal cord injury[J]. Front Cell Neurosci, 2020, 14: 208.
doi: 10.3389/fncel.2020.00208
pmid: 32848612
|
[32] |
WANG Y, CHENG X, HE Q, et al. Astrocytes from the contused spinal cord inhibit oligodendrocyte differentiation of adult oligodendrocyte precursor cells by increasing the expression of bone morphogenetic proteins[J]. J Neurosci, 2011, 31(16): 6053-6058.
doi: 10.1523/JNEUROSCI.5524-09.2011
pmid: 21508230
|
[33] |
YIU G, HE Z. Glial inhibition of CNS axon regeneration[J]. Nat Rev Neurosci, 2006, 7(8): 617-627.
doi: 10.1038/nrn1956
pmid: 16858390
|
[34] |
YANG T, DAI Y, CHEN G, et al. Dissecting the dual role of the glial scar and scar-forming astrocytes in spinal cord injury[J]. Front Cell Neurosci, 2020, 14: 78.
doi: 10.3389/fncel.2020.00078
pmid: 32317938
|
[35] |
OKADA S, NAKAMURA M, KATOH H, et al. Conditional ablation of Stat3 or Socs3 discloses a dual role for reactive astrocytes after spinal cord injury[J]. Nat Med, 2006, 12(7): 829-834.
doi: 10.1038/nm1425
pmid: 16783372
|
[36] |
SOFRONIEW M V. Astrocyte barriers to neurotoxic inflammation[J]. Nat Rev Neurosci, 2015, 16(5): 249-263.
doi: 10.1038/nrn3898
pmid: 25891508
|
[37] |
LIU D, XU G Y, PAN E, et al. Neurotoxicity of glutamate at the concentration released upon spinal cord injury[J]. Neuroscience, 1999, 93(4): 1383-1389.
doi: 10.1016/s0306-4522(99)00278-x
pmid: 10501463
|
[38] |
MARAGAKIS N J, DYKES-HOBERG M, ROTHSTEIN J D. Altered expression of the glutamate transporter EAAT2b in neurological disease[J]. Ann Neurol, 2004, 55(4): 469-477.
pmid: 15048885
|
[39] |
CASELLA G T, MARCILLO A, BUNGE M B, et al. New vascular tissue rapidly replaces neural parenchyma and vessels destroyed by a contusion injury to the rat spinal cord[J]. Exp Neurol, 2002, 173(1): 63-76.
pmid: 11771939
|
[40] |
YAMANE K, MISAWA H, TAKIGAWA T, et al. Multipotent neurotrophic effects of hepatocyte growth factor in spinal cord injury[J]. Int J Mol Sci, 2019, 20(23) : 6078.
doi: 10.3390/ijms20236078
|
[41] |
MENEGHINI V, PEVIANI M, LUCIANI M, et al. Delivery platforms for CRISPR/Cas9 genome editing of glial cells in the central nervous system[J]. Front Genome Ed, 2021, 3: 644319.
doi: 10.3389/fgeed.2021.644319
|
[42] |
LIBERTO C M, ALBRECHT P J, HERX L M, et al. Pro-regenerative properties of cytokine-activated astrocytes[J]. J Neurochem, 2004, 89(5): 1092-1100.
pmid: 15147501
|
[43] |
COLLOMBET J M, FOUR E, FAUQUETTE W, et al. Soman poisoning induces delayed astrogliotic scar and angiogenesis in damaged mouse brain areas[J]. Neurotoxicology, 2007, 28(1): 38-48.
doi: 10.1016/j.neuro.2006.07.011
|
[44] |
BARTANUSZ V, JEZOVA D, ALAJAJIAN B, et al. The blood-spinal cord barrier: morphology and clinical implications[J]. Ann Neurol, 2011, 70(2): 194-206.
doi: 10.1002/ana.22421
pmid: 21674586
|
[45] |
WHETSTONE W D, HSU J Y, EISENBERG M, et al. Blood-spinal cord barrier after spinal cord injury: relation to revascularization and wound healing[J]. J Neurosci Res, 2003, 74(2): 227-239.
pmid: 14515352
|
[46] |
WAHIS J, HENNES M, ARCKENS L, et al. Star power: the emerging role of astrocytes as neuronal partners during cortical plasticity[J]. Curr Opin Neurobiol, 2021, 67: 174-182.
doi: 10.1016/j.conb.2020.12.001
pmid: 33360483
|
[47] |
CHUNG W S, ALLEN N J, EROGLU C. Astrocytes control synapse formation, function, and elimination[J]. Cold Spring Harb Perspect Biol, 2015, 7(9): a020370.
doi: 10.1101/cshperspect.a020370
|
[48] |
WANG Y, FU A K Y, IP N Y. Instructive roles of astrocytes in hippocampal synaptic plasticity: neuronal activity-dependent regulatory mechanisms[J]. Febs J, 2022, 289(8): 2202-2218.
doi: 10.1111/febs.v289.8
|