1 |
FARRELL A E, PLEVIN R J, TURNER B T, et al Ethanol can contribute to energy and environmental goals[J]. Science, 2006, 311 (5760):506-508.
doi: 10.1126/science.1121416
|
2 |
TIAN P, WEI Y X, YE M, et al Methanol to olefins (MTO): From fundamentals to commercialization[J]. ACS Catal, 2015, 5 (3):1922-1938.
doi: 10.1021/acscatal.5b00007
|
3 |
BI J D, GUO X W, LIU M, et al High effective dehydration of bio-ethanol into ethylene over nanoscale HZSM-5 zeolite catalysts[J]. Cataly Today, 2010, 149 (1, 2):143-147.
|
4 |
ARAI H, SAITOY, YONEDA Y Ethanol dehydration on alumina catalysts Ⅱ. The infrared study on adsorption of diethyl ether over alumina[J]. J Catal, 1968, 10, 128-133.
doi: 10.1016/0021-9517(68)90164-4
|
5 |
GAYUBO A G, TARRIO A M, AGUAYO A T, et al Kinetic modelling of the transformation of aqueous ethanol into hydrocarbons on a HZSM-5 zeolite[J]. Ind Eng Chem Res, 2001, 40 (16):3467-3474.
doi: 10.1021/ie001115e
|
6 |
KWAK J H, MEI D H, PEDEN C H F, et al (100) facets of γ-Al2O3: The active surfaces for alcohol dehydration reactions[J]. Catal Lett, 2011, 141 (5):649-655.
doi: 10.1007/s10562-010-0496-8
|
7 |
TRET'YAKOV V F, MAKARFI Y I, TRET'YAKOV K V, et al The catalytic conversion of bioethanol to hydrocarbon fuel: A review and study[J]. Catalysis in Industry, 2011, 2 (4):402-420.
|
8 |
SONG Z X, TAKAHASHI A, NAKAMURA I, et al Phosphorus-modified ZSM-5 for conversion of ethanol to propylene[J]. Appl Catals A-Gen, 2010, 384 (1, 2):201-205.
|
9 |
DAI W L, SUN X M, TANG B, et al Verifying the mechanism of the ethene-to-propene conversion on zeolite H-SSZ-13[J]. J Catal, 2014, 314, 10-20.
doi: 10.1016/j.jcat.2014.03.006
|
10 |
XU S T, ZHI Y C, HAN J F, et al Advances in catalysis for methanol-to-olefins conversion[J]. Adv Catal, 2017, 61, 37-122.
|
11 |
ALEXOPOULOS K, JOHN M, VAN DER BORGHT K, et al DFT-based microkinetic modeling of ethanol dehydration in H-ZSM-5[J]. J Catal, 2016, 339, 173-185.
doi: 10.1016/j.jcat.2016.04.020
|
12 |
KIM S, ROBICHAUD D J, BECKHAM G T, et al Ethanol dehydration in HZSM-5 studied by density functional theory: Evidence for a concerted process[J]. J Phys Chem A, 2015, 119 (15):3604-3614.
doi: 10.1021/jp513024z
|
13 |
PHUNG T K, BUSCA G Diethyl ether cracking and ethanol dehydration: Acid catalysis and reaction paths[J]. Chem Eng J, 2015, 272, 92-101.
doi: 10.1016/j.cej.2015.03.008
|
14 |
CHIANG H, BHAN A Catalytic consequences of hydroxyl group location on the rate and mechanism of parallel dehydration reactions of ethanol over acidic zeolites[J]. J Catal, 2010, 271 (2):251-261.
doi: 10.1016/j.jcat.2010.01.021
|
15 |
ZHANG M H, YU Y Z Dehydration of ethanol to ethylene[J]. Ind Eng Chem Res, 2013, 52 (28):9505-9514.
doi: 10.1021/ie401157c
|
16 |
SUN J, WANG Y Recent advances in catalytic conversion of ethanol to chemicals[J]. Acs Catal, 2014, 4 (4):1078-1090.
doi: 10.1021/cs4011343
|
17 |
NGUYEN T M, LE VAN MAO R Conversion of ethanol in aqueous solution over ZSM-5 zeolites: Study of the reaction network[J]. Appl Catal, 1990, 58 (1):119-129.
doi: 10.1016/S0166-9834(00)82282-4
|
18 |
KONDO J N, ITO K, YODA E, et al An ethoxy intermediate in ethanol dehydration on bronsted acid sites in zeolite[J]. J Phy Chem B, 2005, 109 (21):10969-10972.
doi: 10.1021/jp050721q
|
19 |
WANG W, JIAO J, JIANG Y J, et al Formation and decomposition of surface ethoxy species on acidic zeolite Y[J]. Chem Phys Chem, 2005, 6 (8):1467-1469.
doi: 10.1002/cphc.200500262
|
20 |
ZHOU X, WANG C, CHU Y Y, et al Observation of an oxonium ion intermediate in ethanol dehydration to ethene on zeolite[J]. Nat Commun, 2019, 10 (1):1961-1961.
doi: 10.1038/s41467-019-09956-7
|
21 |
ZENG S, LI J J, WANG N, et al Investigation of ethanol conversion on H-ZSM-5 zeolite by in situ solid-state NMR[J]. Energ Fuel, 2021, 35 (15):12319-12328.
doi: 10.1021/acs.energyfuels.1c02151
|
22 |
MOWER P, FRILETTER V, MAATMAN R, et al Catalysis by crystalline aluminosilicates Ⅱ. Molecular-shape selective reactions[J]. J Catal, 1962, 1, 307-312.
doi: 10.1016/0021-9517(62)90058-1
|
23 |
CSICSERY S M Shape-selective catalysis in zeolites[J]. Zeolites, 1984, 4 (3):202-213.
doi: 10.1016/0144-2449(84)90024-1
|
24 |
DEGNAN T The implications of the fundamentals of shape selectivity for the development of catalysts for the petroleum and petrochemical industries[J]. J Catal, 2003, 216 (1, 2):32-46.
|
25 |
TEKETEL S, LUNDEGARRD L F, SKISTAD W, et al Morphology-induced shape selectivity in zeolite catalysis[J]. J Catal, 2015, 327, 22-32.
doi: 10.1016/j.jcat.2015.03.013
|
26 |
WU P F, YANG M, SUN L J, et al Synthesis of nanosized SAPO-34 with the assistance of bifunctional amine and seeds[J]. Chem Commun, 2018, 54 (79):11160-11163.
doi: 10.1039/C8CC05871G
|
27 |
LI J Z, WEI Y X, CHEN J R, et al Cavity controls the selectivity: insights of confinement effects on MTO reaction[J]. ACS Catal, 2014, 5 (2):661-665.
|
28 |
ZHANG W N, CHEN J R, XU S T, et al Methanol to olefins reaction over cavity-type zeolite: Cavity controls the critical intermediates and product selectivity[J]. ACS Catal, 2018, 8 (12):10950-10963.
doi: 10.1021/acscatal.8b02164
|
29 |
ZHOU Y, QI L, WEI Y, et al Comparative investigation of the MTH induction reaction over HZSM-5 and HSAPO-34 catalysts[J]. Mol Catal, 2017, 433, 20-27.
doi: 10.1016/j.mcat.2017.02.018
|
30 |
WANG L Y, ZHU D L, WANG J, et al Embryonic zeolite-assisted synthesis of SSZ-13 with superior efficiency and their excellent catalytic performance[J]. J Mater Chem A, 2021, 9, 15238-15245.
doi: 10.1039/D1TA01452H
|
31 |
YANG Y N, WANG X L, YAO Y F The effects of reaction environment on photocatalytic methanol reforming studied by operando nuclear magnetic resonance spectroscopy[J]. Chinese J Magn Reson, 2020, 37 (1):104-113.
|
|
杨以宁, 王雪路, 姚叶峰 原位核磁共振技术研究反应环境对光催化甲醇重整过程的影响[J]. 波谱学杂志, 2020, 37 (1):104-113.
|
32 |
LIU W Q, SONG Y H, WANG X L, et al In operando nuclear magnetic resonance spectroscopy study on photocatalytic methanol reforming[J]. Chinese J Magn Reson, 2019, 36 (3):298-308.
|
|
刘文卿, 宋艳红, 王雪璐, 等 光催化甲醇重整机理的原位核磁共振研究[J]. 波谱学杂志, 2019, 36 (3):298-308.
|
33 |
HUNGER M, HORVATH T Conversion of propan-2-ol on zeolite LaNaY and HY investigated by gas chromatography and in situ MAS NMR spectroscopy under continuous-flow conditions[J]. J Catal, 1997, 167 (1):187-197.
doi: 10.1006/jcat.1997.1562
|
34 |
WANG W, JIANG Y J, HUNGER M Mechanistic investigations of the methanol-to-olefin (MTO) process on acidic zeolite catalysts by in situ solid-state NMR spectroscopy[J]. Catal Today, 2006, 113 (1, 2):102-114.
|
35 |
HAW J F, NICHOLAS J B, SONG W G, et al Roles for cyclopentenyl cations in the synthesis of hydrocarbons from methanol on zeolite catalyst HZSM-5[J]. J Am Chem Soc, 2000, 122 (19):4763-4775.
doi: 10.1021/ja994103x
|
36 |
THURBER K R, TYCKO R Measurement of sample temperatures under magic-angle spinning from the chemical shift and spin-lattice relaxation rate of 79Br in KBr powder[J]. J Magn Reson, 2009, 196 (1):84-87.
doi: 10.1016/j.jmr.2008.09.019
|
37 |
HOU G J, YAN S, TREBOSC J, et al Broadband homonuclear correlation spectroscopy driven by combined R2(n)(v) sequences under fast magic angle spinning for NMR structural analysis of organic and biological solids[J]. J Magn Reson, 2013, 232, 18-30.
doi: 10.1016/j.jmr.2013.04.009
|
38 |
SUN T, CHEN W, XU S, et al The first carbon-carbon bond formation mechanism in methanol-to-hydrocarbons process over chabazite zeolite[J]. Chem, 2021,
doi: 10.1016/j.chempr.2021.05.023
|
39 |
STEPANOV A G, LUZGIN M V, ROMANNIKOV V N, et al The nature, structure, and composition of adsorbed hydrocarbon products of ambient temperature oligomerization of ethene on acidic zeolite H-ZSM-5[J]. J Catal, 1998, 178, 466-477.
doi: 10.1006/jcat.1998.2172
|
40 |
FRIDGEN T D, MCMAHON T B The reaction of protonated dimethyl ether with dimethyl Ether: temperature and isotope effects on the methyl cation transfer reaction forming trimethyloxonium cation and methanol[J]. J Am Chem Soc, 2001, 123 (17):3980-3985.
doi: 10.1021/ja002972c
|