波谱学杂志 ›› 2021, Vol. 38 ›› Issue (3): 381-391.doi: 10.11938/cjmr20212881

• 研究论文 • 上一篇    下一篇

基于Faster-RCNN和Level-Set的桥小脑角区肿瘤自动精准分割

刘颖*(),郭伊云,陈静聪,章浩伟   

  1. 上海理工大学 医疗器械与食品学院, 医学影像工程研究所, 上海 200093
  • 收稿日期:2021-01-07 出版日期:2021-09-05 发布日期:2021-03-22
  • 通讯作者: 刘颖 E-mail:ling2431@163.com
  • 基金资助:
    微创励志创新基金资助项目(193832381)

Automatic Precise Segmentation of Cerebellopontine Angle Tumor Based on Faster-RCNN and Level-Set Method

Ying LIU*(),Yi-yun GUO,Jing-cong CHEN,Hao-wei ZHANG   

  1. Institute of Medical Imaging Engineering, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • Received:2021-01-07 Online:2021-09-05 Published:2021-03-22
  • Contact: Ying LIU E-mail:ling2431@163.com

摘要:

桥小脑角区(CPA)肿瘤的精准分割在手术治疗、放疗中有重要影响,本文结合更快速区域卷积神经网络(Faster-RCNN)和水平集(Level-Set)方法对CPA肿瘤的自动分割进行了研究.首先,采集317名CPA肿瘤患者的T1WI-SE序列磁共振图像,使用基于Faster-RCNN主干网络VGG16提取特征,结合区域建议网络(RPN)进行学习训练,建立带有CPA肿瘤位置信息的定位模型,再应用Level-Set对肿瘤进行精准分割.本文对比了不同CPA肿瘤区域勾画范围对分割结果产生的影响,并以精确率、召回率、均值平均精度值(mAP)和戴斯系数(Dice系数)等指标评估了模型定位和分割的性能.实验结果表明,结合Faster-RCNN和Level-Set建立的模型能更有效对CPA肿瘤进行精准分割,减轻临床医生的负担,并提升治疗效果.

关键词: 更快速区域卷积神经网络(Faster-RCNN), 水平集(Level-Set), 图像分割, 桥小脑角区肿瘤

Abstract:

To meet the demands in surgical treatment and radiotherapy, this work combines the faster region convolutional neural network (Faster-RCNN) and Level-Set methods to segment cerebellopontine angle (CPA) tumors automatically and precisely. T1WI-SE magnetic resonance images from 317 CPA tumor patients were collected. Features extracted by VGG16 were combined with the region proposal network (RPN) for training. A CPA tumor localization model was then established, before the Level-Set method was applied to accurately segment the tumor. The segmentation results of different CPA tumor regions were compared in terms of precision, recall, mean average precision (mAP) and Dice coefficient. The results showed that the method proposed can effectively and precisely segment CPA tumors, thereby capable of reducing the burden on clinicians and improving the treatment effect.

Key words: faster region convolutional neural network (Faster-RCNN), Level-Set, image segmentation, cerebellopontine angle tumor

中图分类号: