[1] Bock D D, Lee W C A, Kerlin A M, et al. Network anatomy and in vivo physiology of visual cortical neurons[J]. Nature, 2011, 471: 177-182.
[2] Chugani H T, Phelps M E, Mazziotta J C. Positron emission tomography study of human-brain functional-development[J]. Ann Neurol, 1987, 22: 487-497.
[3] Micheva K D, Smith S J. Array tomography: A new tool for imaging the molecular architecture and ultrastructure of neural circuits[J]. Neuron, 2007, 55: 824-824.
[4] Ogawa S, Lee T M, Kay A R, et al. Brain magnetic-resonance-imaging with contrast dependent on blood oxygenation[J]. P Natl Acad Sci USA, 1990, 87: 9 868-9 872.
[5] Belliveau J W, Kennedy Jr D N, McKinstry R C, et al. Functional mapping of the human visual cortex by magnetic resonance imaging[J]. Science, 1991, 254: 716-719.
[6] Logothetis N K. What we can do and what we cannot do with fMRI[J]. Nature, 2008, 453: 869-878.
[7] Aguirre G K, Zarahn E, D'Esposito M, et al. The variability of human, BOLD hemodynamic responses[J]. Neuroimage, 1998, 8: 360-369.
[8] Detre J A, Leigh J S, Williams D S, et al. Perfusion Imaging[J]. Magnet Reson Med, 1992, 23: 37-45.
[9] Basser P J, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy and imaging[J]. Biophys J, 1994, 66: 259-267.
[10] Conturo T E, Lori N F, Cull T S, et al. Tracking neuronal fiber pathways in the living human brain[J]. P Natl Acad Sci USA, 1999, 96: 10 422-10 427.
[11] Belliveau J W, Kwong K K, Kennedy D N, et al. Magnetic-resonance-imaging mapping of brain-function - human visual-cortex[J]. Invest Radiol, 1992, 27: S59-S65.
[12] Mandeville J B, Marota J J A, Kosofsky B E, et al. Dynamic functional imaging of relative cerebral blood volume during rat forepaw stimulation[J]. Magnet Reson Med, 1998, 39: 615-624.
[13] Engel S A, Glover G H, Wandell B A. Retinotopic organization in human visual cortex and the spatial precision of functional MRI[J]. Cereb Cortex, 1997, 7: 181-192.
[14] Tan L H, Spinks J A, Gao J H, et al. Brain activation in the processing of Chinese characters and words: a functional MRI study[J]. Hum Brain Mapp, 2000, 10: 16-27.
[15] Thomas K M, King S W, Franzen P L, et al. A developmental functional MRI study of spatial working memory[J]. Neuroimage, 1999, 10: 327-338.
[16] Xu F, Liu N, Kida I, et al. Odor maps of aldehydes and esters revealed by functional MRI in the glomerular layer of the mouse olfactory bulb[J]. Proc Natl Acad Sci USA, 2003, 100: 11 029-11 034.
[17] Greicius M D, Srivastava G, Reiss A L, et al. Default-mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI[J]. Proc Natl Acad Sci USA, 2004, 101: 4 637-4 642. [18] Sabatini U, Boulanouar K, Fabre N, et al. Cortical motor reorganization in akinetic patients with Parkinson's disease: a functional MRI study[J]. Brain, 2000, 123 ( Pt 2): 394-403.
[19] Springer J A, Binder J R, Hammeke T A, et al. Language dominance in neurologically normal and epilepsy subjects: a functional MRI study[J]. Brain, 1999, 122( Pt11): 2 033-2 046.
[20] Greicius M D, Flores B H, Menon V, et al. Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus[J]. Biol Psychiatry, 2007, 62: 429-437.
[21] Just M A, Cherkassky V L, Keller T A, et al. Functional and anatomical cortical underconnectivity in autism: evidence from an FMRI study of an executive function task and corpus callosum morphometry[J]. Cereb Cortex, 2007, 17: 951-961.
[22] Lynall M E, Bassett D S, Kerwin R, et al. Functional connectivity and brain networks in schizophrenia[J]. J Neurosci, 2010, 30: 9 477-9 487.
[23] Uludag K, Muller-Bierl B, Ugurbil K. An integrative model for neuronal activity-induced signal changes for gradient and spin echo functional imaging[J]. Neuroimage, 2009, 48: 150-165.
[24] Zheng Y, Mayhew J. A time-invariant visco-elastic windkessel model relating blood flow and blood volume[J]. Neuroimage, 2009, 47: 1 371-1 380.
[25] Fox P T, Raichle M E, Mintun M A, et al. Nonoxidative glucose consumption during focal physiologic neural activity[J]. Science, 1988, 241: 462-464.
[26] Magistretti P J, Pellerin L. Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging[J]. Philos T Roy Soc B, 1999, 354: 1 155-1 163.
[27] Shulman R G, Rothman D L, Behar K L, et al. Energetic basis of brain activity: implications for neuroimaging[J]. Trends Neurosci, 2004, 27: 489-495.
[28] Buxton R B, Frank L R. A model for the coupling between cerebral blood flow and oxygen metabolism during neural stimulation[J]. J Cerebr Blood F Met, 1997, 17: 64-72.
[29] Logothetis N K, Pauls J, Augath M, et al. Neurophysiological investigation of the basis of the fMRI signal[J]. Nature, 2001, 412: 150-157.
[30] Nagel G, Szellas T, Huhn W, et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel[J]. P Natl Acad Sci USA, 2003, 100: 13 940-13 945.
[31] Zhang F, Wang L P, Brauner M, et al. Multimodal fast optical interrogation of neural circuitry[J]. Nature, 2007, 446: 633-639.
[32] Nature Methods Editorial. Method of the Year 2010[C]. Nat Methods, 2011, 8: 1.
[33] Arenkiel B R, Peca J, Davison I G, et al. In vivo light-induced activation of neural circuitry in transgenic mice expressing channelrhodopsin-2[J]. Neuron, 2007, 54: 205-218.
[34] Zhao S L, Cunha C, Zhang F, et al. Improved expression of halorhodopsin for light-induced silencing of neuronal activity[J]. Brain Cell Biol, 2008, 36: 141-154.
[35] Boyden E S, Zhang F, Bamberg E, et al. Millisecond-timescale, genetically targeted optical control of neural activity[J]. Nat Neurosci, 2005, 8: 1 263-1 268.
[36] Chakravarthy S, Keck T, Roelandse M, et al. Cre-dependent expression of multiple transgenes in isolated neurons of the adult forebrain[J]. Plos One, 2008, 3: e3059.
[37] Carter M E, Yizhar O, Chikahisa S, et al. Tuning arousal with optogenetic modulation of locus coeruleus neurons[J]. Nat Neurosci, 2010, 13: 1 526-1 117.
[38] Tonnesen J, Sorensen A T, Deisseroth K, et al. Optogenetic control of epileptiform activity[J]. Proc Natl Acad Sci USA, 2009, 106: 12 162-12 167.
[39] Aravanis A M, Wang L P , Zhang F, et al. An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology [J]-156.. J Neural Eng, 2007, 4: S143
[40] Tsai H C, Zhang F, Adamantidis A, et al. Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning[J]. Science, 2009, 324: 1 080-1 084.
[42] Desai M, Kahn I, Knoblich U, et al. Mapping brain networks in awake mice using combined optical neural control and fMRI[J]. J Neurophysiol, 2011, 105: 1 393-1 405.
[44] Parker D L. Applications of NMR imaging in hyperthermia - an evaluation of the potential for localized tissue heating and noninvasive temperature monitoring[J]. Ieee T Bio-Med Eng, 1984, 31: 161-167.
[45] Christie I, Wells J A, Southern P, et al. fMRI response to blue light delivery in the naïve brain: Implications for combined optogenetic fMRI studies[J]. Neuroimage, 2012, 66: 634-641.
[46] Han X, Qian X, Bernstein J G, et al. Millisecond-timescale optical control of neural dynamics in the nonhuman primate brain[J]. Neuron, 2009, 62: 191-198.
[47] Zhang F, Aravanis A M, Adamantidis A, et al. Circuit-breakers: optical technologies for probing neural signals and systems[J]. Nat Rev Neurosci, 2007, 8: 577-581. |