[1] Ruiz-Cabello J, Barnett B P, Bottomley P A, et al. Fluorine (19F) MRS and MRI in biomedicine[J]. NMR Biomed, 2011, 24(2): 114-129.
[2] Danielson M A, Falke J J. Use of 19F NMR to probe protein structure and conformational changes[J]. Annu Rev Bioph Biom, 1996, 25: 163-195.
[3] Michalik M, Hein M, Frank M. NMR spectra of fluorinated carbohydrates[J]. Carbohyd Res, 2000, 327(1-2): 185-218.
[4] Puffer B, Kreutz C, Rieder U, et al. 5-Fluoro pyrimidines: labels to probe DNA and RNA secondary structures by 1D 19F NMR spectroscopy[J]. Nucleic Acids Res, 2009, 37(22): 7 728-7 740.
[5] Reid D G, Murphy P S. Fluorine magnetic resonance in vivo: a powerful tool in the study of drug distribution and metabolism[J]. Drug Discov Today, 2008, 13(11-12): 473-480.
[6] Kitevski-Leblanc J L, Scott Prosser R. Current applications of 19F NMR to studies of protein structure and dynamics[J]. Prog Nucl Magn Reson Spectrosc, 2012, 62: 1-33.
[7] Duewel H, Daub E, Robinson V, et al. Incorporation of trifluoromethionine into a phage lysozyme: implications and a new marker for use in protein 19F NMR[J]. Biochemistry, 1997, 36(11): 3 404-3 416.
[8] Feeney J, Mccormick J E, Bauer C J, et al. 19F nuclear magnetic resonance chemical shifts of fluorine containing aliphatic amino acids in proteins: Studies on lactobacillus casei dihydrofolate reductase containing (2S, 4S)-5-Fluoroleucine[J]. J Am Chem Soc, 1996, 118(36): 8 700-8 706.
[9] Tang Y, Ghirlanda G, Petka W A, et al. Fluorinated coiled-coil proteins prepared in vivo display enhanced thermal and chemical stability[J]. Angew Chem, 2001, 113(8): 1 542-1 544.
[10] Wang P, Fichera A, Kumar K, et al. Alternative translations of a single RNA message: An identity switch of (2S, 3R)-4, 4, 4-trifluorovaline between valine and isoleucine codons[J]. Angew Chem Int Ed, 2004, 43(28): 3 664-3 666.
[11] Kim H W, Perez J A, Ferguson S J, et al. The specific incorporation of labelled aromatic amino acids into proteins through growth of bacteria in the presence of glyphosate: Application to fluorotryptophan labelling to the H+ ATPase of Escherichia coli and NMR studies[J]. FEBS Lett, 1990, 272(1-2): 34-36.
[12] Hyean-Woo L, Sohn J H, Byung Ii Y, et al.19F NMR investigation of F1-ATPase of escherichia coli using fluorotryptophan labeling[J]. J Biochem, 2000, 127(6): 1 053-1 056.
[13] Li C, Lutz E A, Slade K M, et al. 19F NMR studies of α-synuclein conformation and fibrillation[J]. Biochemistry, 2009, 48(36): 8 578-8 584.
[14] Kitevski-Leblanc J L, Al-Abdul-Wahid M S, Prosser R S. A mutagenesis-free approach to assignment of 19F NMR resonances in biosynthetically labeled proteins[J]. J Am Chem Soc, 2009, 131(6): 2 054-2 055.
[15] Wilkins B J, Marionni S, Young D D, et al. Site-specific incorporation of fluorotyrosines into proteins in Escherichia coli by photochemical disguise[J]. Biochemistry, 2010, 49(8): 1 557-1 559.
[16] Taylor H C, Richardson D C, Richardson J S, et al. “Active” conformation of an inactive semi-synthetic ribonuclease S[J]. J Mol Bio, 1981, 149(2): 313-317.
[17] Shi P, Li D, Chen H, et al. In situ 19F NMR studies of an E. coli- membrane protein[J]. Protein Sci, 2012, 21(4): 596-600.
[18] Shi P, Li D, Chen H W, et al. Site-specific solvent exposure analysis of a membrane protein using unnatural amino acids and F-19 nuclear magnetic resonance[J]. Biochem Biophys Res Commun, 2011, 414(2): 379-383.
[19] Shi P, Wang H, Xi Z Y, et al. Site-specific 19F NMR chemical shift and side chain relaxation analysis of a membrane protein labeled with an unnatural amino acid[J]. Protein Sci, 2011, 20(1): 224-228.
[20] Shi P, Xi Z Y, Wang H, et al. Site-specific protein backbone and side-chain NMR chemical shift and relaxation analysis of human vinexin SH3 domain using a genetically encoded N-15/F-19-labeled unnatural amino acid[J]. Biochem Biophys Res Commun, 2010, 402(3): 461-466.
[21] Jackson J C, Hammill J T, Mehl R A. Site-specific incorporation of a 19F-amino acid into proteins as an NMR probe for characterizing protein structure and reactivity[J]. J Am Chem Soc, 2007, 129(5): 1 160-1 166.
[22] Jones D H, Cellitti S E, Hao X, et al. Site-specific labeling of proteins with NMR-active unnatural amino acids[J]. J Biomol NMR, 2010, 46(1): 89-100.
[23] Hammill J T, Miyake-Stoner S, Hazen J L, et al. Preparation of site-specifically labeled fluorinated proteins for 19F NMR structural characterization[J]. Nat Protoc, 2007, 2(10): 2 601-2 607.
[24 Miyake-Stoner S J, Refakis C A, Hammill J T, et al. Generating permissive site-specific unnatural aminoacyl-tRNA synthetases[J]. Biochemistry, 2010, 49(8): 1 667-1 677.
[25] Loscha K V, Herlt A J, Qi R, et al. Multiple-site labeling of proteins with unnatural amino acids[J]. Angew Chem Int Ed, 2012, 51(9): 2 243-2 246.
[26] Thomas M R, Boxer S G. 19F NMR of Trifluoroacetyl-labeled cysteine mutants of myoglobin: Structural probes of nitric oxide bound to the H93G cavity mutant[J]. Biochemistry, 2001, 40(29): 8 588-8 596.
[27] Critz W, Martinez-Carrion M. Sulfhydryl group modification of aspartate aminotransferase with 3-bromo-1, 1, 1-trifluoropropanone during catalysis[J]. Biochemistry, 1977, 16(8): 1 554-1 558.
[28] Hellmich U A, Pfleger N, Glaubitz C. 19F MAS NMR on proteorhodopsin: Enhanced protocol for site‐specific labeling for general application to membrane proteins[J]. Photochem Photobiol, 2009, 85(2): 535-539.
[29] Mehta V D, Kulkarni P V, Mason R P, et al. Fluorinated proteins as potential 19F magnetic resonance imaging and spectroscopy agents[J]. Bioconjug Chem, 1994, 5(3): 257-261.
[30] Shriver J W, Sykes B D. Energetics of the equilibrium between two nucleotide-free myosin subfragment 1 states using fluorine-19 NMR[J]. Biochemistry, 1982, 21(12): 3 022-3 028.
[31] Kalbitzer H R, Rohr G, Nowak E, et al. A new high sensitivity 19F probe for labeling cysteine groups of proteins[J]. NMR Biomed, 1992, 5(6): 347-350.
[32] Heintz D, Kany H, Kalbitzer H R. Mobility of the N-terminal segment of rabbit skeletal muscle F-actin detected by 1H and 19F nuclear magnetic resonance spectroscopy[J]. Biochemistry, 1996, 35(39): 12 686-12 693.
[33] Adriaensens P, Box M E, Martens H I, et al. Investigation of protein structure by means of 19F NMR[J]. Eur J Biochem, 1988, 177(2): 383-394.
[34] Klein-Seetharaman J, Getmanova E V, Loewen M C, et al. NMR spectroscopy in studies of light-induced structural changes in mammalian rhodopsin: Applicability of solution 19F NMR[J]. Proc Natl Acad Sci USA, 1999, 96(24): 13 744-13 749.
[35] Loewen M C, Klein-Seetharaman J, Getmanova E V, et al. Solution 19F nuclear Overhauser effects in structural studies of the cytoplasmic domain of mammalian rhodopsin[J]. Proc Natl Acad Sci USA, 2001, 98(9): 4 888-4 892.
[36] Luchette P A, Prosser R S, Sanders C R. Oxygen as a paramagnetic probe of membrane protein structure by cysteine mutagenesis and 19F NMR spectroscopy[J]. J Am Chem Soc, 2002, 124(8): 1 778-1 781.
[37] Evanics F, Kitevski J L, Bezsonova I, et al. 19F NMR studies of solvent exposure and peptide binding to an SH3 domain[J]. Biochim Biophys Acta, 2007, 1 770(2): 221-230.
[38] Kitevski-Leblanc J L, Evanics F, Prosser R S. Approaches for the measurement of solvent exposure in proteins by 19F NMR[J]. J Biomol NMR, 2009, 45(3): 255-264.
[39] Salgado J, Grage S L, Kondejewski L H, et al. Membrane-bound structure and alignment of the antimicrobial β-sheet peptide gramicidin S derived from angular and distance constraints by solid state 19F NMR[J]. J Biomol NMR, 2001, 21(3): 191-208.
[40] Afonin S, Mikhailiuk P K, Komarov I V, et al. Evaluating the amino acid CF3-bicyclopentylglycine as a new label for solid-state 19F NMR structure analysis of membrane-bound peptides[J]. J Pept Sci, 2007, 13(9): 614-623.
[41] Koch K, Afonin S, Ieronimo M, et al. Solid-state 19F NMR of peptides in native membranes[J]. Top Curr Chem, 2012, 306: 89-118.
[42] Luo W, Mani R, Hong M. Side-chain conformation of the M2 transmembrane peptide proton channel of influenza a virus from 19F solidstate NMR[J]. J Phys Chem B, 2007, 111(36): 10 825-10 832.
[43] Judge P J, Watts A. Recent contributions from solid-state NMR to the understanding of membrane protein structure and function[J]. Curr Opin Chem Biol, 2011, 15(5): 690-695.
[44] Williams S P, Haggie P M, Brindle K M. 19F NMR measurements of the rotational mobility of proteins in vivo[J]. Biophys J, 1997, 72(1): 490-498.
[45] Luck L A, Vance J E, O'connell T M, et al. 19F NMR relaxation studies on 5-fluorotryptophan-and tetradeutero-5-fluorotryptophan-labeled E. coli- glucose/galactose receptor[J]. J Biomol NMR, 1996, 7(4): 261-272.
[46] Khan F, Kuprov I, Craggs T D, et al. 19F NMR studies of the native and denatured states of green fluorescent protein[J]. J Am Chem Soc, 2006, 128(33): 10 729-10 737.
[47] Li H, Frieden C. NMR studies of 4-19F-phenylalanine-labeled intestinal fatty acid binding protein: Evidence for conformational heterogeneity in the native state[J]. Biochemistry, 2005, 44(7): 2 369-2 377.
[48] Ahmed A H, Loh A P, Jane D E, et al. Dynamics of the S1S2 glutamate binding domain of GluR2 measured using 19F NMR spectroscopy
[J]. J Biol Chem, 2007, 282(17): 12 773-12 784.
[49] Buer B C, Chugh J, Al-Hashimi H M, et al. Using fluorine nuclear magnetic resonance to probe the interaction of membrane-active peptides with the lipid bilayer[J]. Biochemistry, 2010, 49(27): 5 760-5 765.
[50] Mandel A M, Akke M, Palmer Iii A G. Dynamics of ribonuclease H: temperature dependence of motions on multiple time scales[J]. Biochemistry, 1996, 35(50): 16 009-16 023.
[51] Gerig J. Fluorine nuclear magnetic resonance of fluorinated ligands[J]. Methods Enzymol, 1989, 177: 3-23.
[52] Sun Z Y, Pratt E A, Simplaceanu V, et al. A 19F NMR study of the equilibrium unfolding of membrane-associated D-lactate dehydrogenase of Escherichia coli[J]. Biochemistry, 1996, 35(51): 16 502-16 509.
[53] Shu Q, Frieden C. Urea-dependent unfolding of murine adenosine deaminase: sequential destabilization as measured by 19F NMR[J]. Biochemistry, 2004, 43(6): 1 432-1 439.
[54] Li H, Frieden C. Observation of sequential steps in the folding of intestinal fatty acid binding protein using a slow folding mutant and 19F NMR[J]. Proc Natl Acad Sci USA, 2007, 104(29): 11 993-11 998.
[55] Basehore H K, Ropson I J. Residual interactions in unfolded bile acid-binding protein by 19F NMR[J]. Protein Sci, 2011, 20(2): 327-335.
[56] Stockman B J. NMR spectroscopy as a tool for structure-based drug design[J]. Prog Nucl Magn Reson Spectrosc, 1998, 33(2): 109-151.
[57] Evans J N S. Biomolecular NMR spectroscopy[M]. Oxford: Oxford University Press, 1995.
[58] Wider G. Structure determination of biological macromolecules in solution using nuclear magnetic resonance spectroscopy[J]. Bio Techniques, 2000, 29(6): 1 278-1 295.
[59] Frieden C, Hoeltzli S D, Bann J G. The preparation of 19F labeled proteins for NMR studies[J]. Method Enzymol, 2004, 380: 400-415.
[60] Danielson M A, Falke J J. Use of 19F NMR to probe protein structure and conformational changes[J]. Annu Rev Biophys Biomol Struct, 1996, 25(1): 163-195.
[61] Gerig J T. Fluorine NMR of proteins[J]. Prog Nucl Magn Reson Spectrosc, 1994, 26: 293-370.
[62] Yu L, Hajduk P J, Mack J, et al. Structural studies of Bcl-xL/ligand complexes using 19F NMR[J]. J Biomol NMR, 2006, 34(4): 221-227.
[63] Leone M, Rodriguez-Mias R A, Pellecchia M. Selective incorporation of 19F-labeled trp side chains for NMR-spectroscopy-based ligandprotein interaction studies[J]. Chem Bio Chem, 2003, 4(7): 649-650.
[64] Huang Y H, Rich R L, Myszka D G, et al. Requirement of both the second and third BIR domains for the relief of X-linked inhibitor of apoptosis protein (XIAP)-mediated caspase inhibition by Smac[J]. J Biol Chem, 2003, 278(49): 49 517-49 522.
[65] Liu J J, Horst R, Katritch V, et al. Biased signaling pathways in β2-adrenergic receptor characterized by 19F NMR[J]. Sci, 2012, 335(6072): 1 106-1 110.
[66] Lepre C A, Moore J M, Peng J W. Theory and applications of NMR-based screening in pharmaceutical research[J]. Chem Rev, 2004, 104(8): 3 641-3 676.
[67] Carlomagno T. Ligand-target interactions: What can we learn from NMR?[J]. Annu Rev Biophys Biomol Struct, 2005, 34(1): 245-266.
[68] Wyss D F, Mccoy M A, Senior M M. NMR-based approaches for lead discovery[J]. Curr Opin Drug Discov Devel, 2002, 5(4): 630-647.
[69] Peng J W. Cross-Correlated 19F Relaxation measurements for the study of fluorinated ligand-receptor interactions[J]. J Magn Reson, 2001, 153(1): 32-47.
[70] Coles M, Heller M, Kessler H. NMR-based screening technologies[J]. Drug Discov Today, 2003, 8(17): 803-810.
[71] Dalvit C, Flocco M, Veronesi M, et al. Fluorine-NMR competition binding experiments for high-throughput screening of large compound mixtures[J]. Combinatorial Chem High Throughput Screening, 2002, 5(8): 605-611.
[72] Shimizu T, Hatano M. Interaction of trifluoperazine with porcine calmodulin 19F NMR and induced CD spectral studies[J]. FEBS Lett, 1983, 160(1-2): 182-186.
[73] Shimizu T, Hatano M, Muto Y, et al. Interaction of trifluoperazine with Tetrahymena calmodulin: A 19F NMR study[J]. FEBS Lett, 1984, 166(2): 373-377.
[74] Crull G B, Nardo J V, Dawson J H. Direct observation of substrate binding to ferrous-CO cytochrome P-450-CAM using 19F NMR[J]. FEBS Lett, 1989, 254(1-2): 39-42.
[75] Li C, Wang G F, Wang Y, et al. Protein 19F NMR in escherichia coli[J]. J Am Chem Soc, 2009, 132(1): 321-327.
[76] Serber Z, Keatinge-Clay A T, Ledwidge R, et al. High-resolution macromolecular NMR spectroscopy inside living cells[J]. J Am Chem Soc, 2001, 123(10): 2 446-2 447.
[77] Selenko P, Serber Z, Gadea B, et al. Quantitative NMR analysis of the protein G B1 domain in Xenopus laevis egg extracts and intact oocytes[J]. Proc Natl Acad Sci USA, 2006, 103(32): 11 904-11 909.
[78] Selenko P, Wagner G. Looking into live cells with in-cell NMR spectroscopy[J]. J Struct Biol, 2007, 158(2): 244-253.
[79] Sakakibara D, Sasaki A, Ikeya T, et al. Protein structure determination in living cells by in-cell NMR spectroscopy[J]. Nature, 2009, 458(7234): 102-105.
[80] Ito Y, Selenko P. Cellular structural biology[J]. Curr Opin Struct Biol, 2010, 20(5): 640-648.
[81] Bryant J E, Lecomte J T J, Lee A L, et al. Protein dynamics in living cells[J]. Biochemistry, 2007, 46(27): 8 206-8 206. |