[1] Jeener J, Broekaer P. Nuclear magnetic resonance in solids-thermodynamic effects of a pair of RF pulses[J]. Phys Rev, 1967, 157(2): 232.
[2] Meiboom S, Gill D. Modified spin-echo method for measuring nuclear relaxation times[J]. Rev Sci Instrum, 1958, 29(8): 688-691.
[3] Hills B P, Wang Y L, Tang H R. Molecular dynamics in concentrated sugar solutions and glasses: an NMR field cycling study[J]. Mol Phys, 2001, 99(19): 1 679-1 687.
[4] Wang Y L, Belton P S. Application of fast field cycling proton NMR relaxation spectroscopy to a crystalline solid[J]. Chem Phys Lett, 2000, 325(1-3): 33-38.
[5] Terekhov M V, Dvinskikh S V, Privalov A F. A field-cycling NMR study of nematic 4-pentyl-4′-cyanobiphenyl confined in porous glasses[J]. Appl Magn Reson, 1998, 15(3-4): 363-381.
[6] Perrin J C, Lyonnard S, Guillermo A, et al. Water dynamics in ionomer membranes by field-cycling NMR relaxometry[J]. Magn Reson Imaging, 2007, 25(4): 501-504.
[7] Kariyo S, Brodin A, Gainaru C, et al. From simple liquid to polymer melt. Glassy and polymer dynamics studied by fast field cycling NMR relaxometry: Low and high molecular weight limit[J]. Macromolecules, 2008, 41(14): 5 313-5 321.
[8] Prusova A, Conte P, Kucerik J, et al. Dynamics of hyaluronan aqueous solutions as assessed by fast field cycling NMR relaxometry[J]. Anal Bioanal Chem, 2010, 397(7): 3 023-3 028.
[9] Berns A E, Bubici S, De Pasquale C, et al. Applicability of solid state fast field cycling NMR relaxometry in understanding relaxation properties of leaves and leaf-litters[J]. Org Geochem, 2011, 42(8): 978-984.
[10] Bloembergen N, Purcell E M, Pound R V. Relaxation effects in nuclear magnetic resonance absorption[J]. Phys Rev, 1948, 73(7): 679-712.
[11] Kubo R, Tomita K. A general theory of magnetic resonance absorption[J]. J Phys Soc Jpn, 1954, 9(6): 888-919.
[12] Wang Y L, Tang H R, Belton P S. Solid state NMR studies of the molecular motions in the polycrystalline alpha-L-fucopyranose and methyl alpha-L-fucopyranoside[J]. J. Phys Chem B, 2002, 106(49): 12 834-12 840.
[13] Tang H R, Wang Y L, Belton P S. Molecular motions of alpha-L-rhamnopyranose and methyl alpha-L-rhamnopyranoside in the glassy and crystalline states: A proton NMR study[J]. Phys Chem Chem Phys, 2004, 6(13): 3 694-3 701.
[14] Beckmann P A, Hill A I, Kohler E B, et al. Nuclear-spin relaxation in molecular-solids with reorienting methyl and tert-butyl groups- the spectral density and the state of the solid[J]. Phys Rev B, 1988, 38(16): 11 098-11 111.
[15] Tang H R, Belton P S. Molecular dynamics of polycrystalline cellobiose studied by solid-state NMR[J]. Solid State Nucl Magn Reson, 2002, 21(3-4): 117-133.
[16] McCall D W, Douglass D C. Molecular motion in polyethylene.V. (NMR - coparison with dielectric results - 20 degrees-130 degreesC E)[J]. Appl Phys Lett, 1965, 7(1): 12-14.
[17] Wang Y L, Belton P S, Tang H R. Proton NMR relaxation studies of solid L-alaninamide[J]. Chem Phys Lett, 1997, 268(5-6): 387-392.
[18] Tang H R, Belton P S. Molecular motions of D-alpha-galacturonic acid (GA) and methyl-D-alpha-galacturonic acid methyl ester (MGAM) in the solid state - A proton NMR study[J]. Solid State Nucl Magn Reson. 1998, 12(1): 21-30.
[19] Belton P, Wang Y L. Proton NMR relaxation studies of solid L-leucinamide[J]. Mol Phys, 1997, 90(1): 119-125.
[20] Torchia D A. Measurement of proton-enhanced C-13 T1 values by a method which suppresses artifacts[J]. J Magn Reson, 1978, 30(3): 613-616.
[21] Doddrell D, Allerhan.A, Glushko V. Theory of nuclear overhauser enhancement and C-13-H-1 dipolar relaxation in proton-decoupled C-13 NMR-spectra of macromolecules[J]. J Chem Phys, 1972, 56(7): 3 683.
[22] Schaefer J, Natusch D F S. C-13 overhauser effect in polymer-solutions[J]. Macromolecules, 1972, 5(4): 416.
[23] Reichert D. NMR studies of dynamic processes in organic solids. In Annual Reports on NMR Spectroscopy[M], San Diego: Elsevier Academic Press Inc, 2005. 159-203.
[24] Andrew E R, Hinshaw W S, Hutchins M G, et al. Proton magnetic-relaxation and molecular-motion in polycrystalline amino-acids.1. aspartic-acid, cystine, glycine, histine, serine, tryptophan and tyrosine[J]. Mol Phys, 1976, 31(5): 1 479-1 488.
[25] Andrew E R, Hinshaw W S, Hutchins M G, et al. Proton magnetic-relaxation and molecular-motion in polycrystalline amino-acids. 2. alanine, isoleucine, leucine, methionine, norleucine, threonine and valine[J]. Mol Phys, 1976, 32(3): 795-806.
[26] Andrew E R, Hinshaw W S, Hutchins M G, et al. Proton magnetic-relaxation and molecular-motion in polycrystalline amino-acids. 3. argine, asparagine, cysteine, glutamine, phenylalanine and proline[J]. Mol Phys, 1977, 34(6): 1 695-1 706.
[27] Gu Z T, Ebisawa K, McDermott A. Hydrogen bonding effects on amine rotation rates in crystalline amino acids[J]. Solid State Nucl Magn Reson, 1996, 7(3): 161-172.
[28] Taylor R E, Chim N, Dybowski C. NMR characterization of partially deuterated gamma-glycine[J]. J Mol Struct, 2006, 794(1-3): 133-137.
[29] Taylor R E, Dybowski C. Variable temperature NMR characterization of alpha-glycine[J]. J Mol Struct, 2008, 889(1-3): 376-382.
[30] Kitchin S J, Ahn S B, Harris K D M. Effects of polymorphism on functional group dynamics: Solid state H-2 NMR studies of the dynamic properties of the alpha and beta phases of L-glutamic acid[J]. J Phys Chem A, 2002, 106(31): 7 228-7 234.
[31] Kitchin S J, Tutoveanu G, Steele M R, et al. Significantly contrasting solid state dynamics of the racemic and enantiomerically pure crystalline forms of an amino acid[J]. J Phys Chem B, 2005, 109(48): 22 808-22 813.
[32] Sen S, Yu P, Risbud S H, et al. Low-frequency cooperative dynamics in L, D, and DL-alanine crystals: A C-13 and N-15 crosspolarization magic-angle-spinning NMR study[J]. J Phys Chem B, 2006, 110(36): 18 058-18 063.
[33] Keniry M A, Rothgeb T M, Smith R L, et al. Nuclear magnetic-resonance studies of amino-acids and proteins. Side-chain mobility of methionine in the crystalline aminoacid and in crystalline sperm whale (Physeter catodon) myoglobin[J]. Biochemistry, 1983, 22(8): 1 917-1 926.
[34] Sparks S W, Budhu N, Young P E, et al. Side-chain dynamics of crystalline L-3,3-H-2(2) methionine studied by deuterium NMRspectroscopy[J]. J Am Chem Soc, 1988, 110(11): 3 359-3 367.
[35] Gajda J, Pacholczyk J, Bujacz A, et al. Structure and dynamics of L-selenomethionine in the solid state[J]. J Phys Chem B, 2006, 110(51): 25 692-25 701.
[36] Ganapathy S, McDowell C A, Raghunathan P. Nuclear magnetic-resonance and relaxation in DL-norvaline in the solid-state[J]. J Magn Reson, 1982, 50(2): 197-211.
[37] Ren P P, Reichert D, He Q H, et al. Understanding the molecular dynamics associated with polymorphic transitions of DL-norvaline with solid-state NMR methods[J]. J Phys Chem B, 2011, 115: 2 814-2 823.
[38] Wang Y L, Belton P S, Tang H R, et al. Solid state NMR, IR and X-ray diffraction studies of the structure and motion of L-leucinamide[J]. J Chem Soc Perk T 2, 1997, (5): 899-904.
[39] Wang Y L, Belton P S, Tang H R. Proton NMR relaxation studies of solid tyrosine derivatives and their mixtures with L-leucinamide[J]. Solid State Nucl Magn Reson, 1999, 14(1): 19-32.
[40] Reynhardt E C, Latanowicz L. Molecular motions in solid saccharides studied by NMR spectroscopy[J]. Chem Phys Lett, 1996, 251(3-4): 235-241.S
[41] Best R B, Jackson G E, Naidoo K J. An NMR investigation into the dynamics of panose, an alpha(1> 4) and alpha(1> 6)-linked trisaccharide[J]. Spectr Lett, 2002, 35(5): 625-632.
[42] Tang H R, Wang Y L, Belton P S. C-13 CPMAS studies of plant cell wall materials and model systems using proton relaxation-induced spectral editing techniques[J]. Solid State Nucl Magn Reson, 2000, 15(4): 239-248.
[43] Tang H R, Belton P S, Ng A, et al. Solid state H-1 NMR studies of cell wall materials of potatoes[J]. Spectroc Acta Pt A-Molec Biomolec Spectr, 1999, 55(4): 883-894.
[44] Tang H R, Zhao B L, Belton P S, et al. Anomalous proton NMR relaxation behavior of cell wall materials from Chinese water chestnuts[J]. Magn Reson Chem, 2000, 38(9): 765-770.
[45] Tang H R, Godward J, Hills B. The distribution of water in native starch granules - a multinuclear NMR study[J]. Carbohydr Polym, 2000, 43(4): 375-387.
[46] Tang H R, Wang Y L. Nuclear magnetic relaxation in starch systems. In Modern Magnetic Resonance[M]. Springer-Verlag, 2006, 1 723-1 732.
[47] Tait M D, Suggett A, Franks F, et al. Hydration of monosaccharides: A study by dielectric and nuclear magnetic relaxation[J]. J Solut Chem, 1972, 1(2): 131-151.
[48] Girlich D, Ludemann H D. Molecular mobility of the water-molecules in aqueous sucrose solutions, studied by H-2-NMR relaxation[J]. Z Naturforsch (C), 1994, 49(3-4): 250-257.
[49] Mahawanich T, Schmidt S J. Molecular mobility and the perceived sweetness of sucrose, fructose, and glucose solutions[J]. Food Chem, 2004, 84(2): 169-179.
[50] Uedaira H, Okouchi S, Tsuda S. Hydration of glucose and galactose derivatives[J]. Bull Chem Soc Jpn, 2001, 74(10): 1 857-1 861.
[51] Baraguey C, Mertens D, Dolle A. Anisotropic reorientation and intermolecular interactions of sucrose molecules in aqueous solution. A temperature and concentration-dependent C-13 NMR relaxation study[J]. J Phys Chem B, 2002, 106(24): 6 331-6 337.
[52] Behrends R, Kaatze U. Molecular dynamics and conformational kinetics of mono- and disaccharides in aqueous solution[J]. Chem Phys Chem, 2005, 6(6): 1 133-1 145.
[53] Fabri D, Williams M A K, Halstead T K. Water T2 relaxation in sugar solutions[J]. Carbohydr Res, 2005, 340(5): 889-905.
[54] Andrew E R, Bryant D J, Cashell E M. Proton magnetic-relaxation of proteins in the solid-state - molecular-dynamics of ribonuclease[J]. Chem Phys Lett, 1980, 69(3): 551-554.
[55] Andrew E R, Bryant D J, Cashell E M, et al. A proton NMR-study of relaxation and dynamics in polycrystalline insulin[J]. FEBS Lett, 1981, 126(2): 208-210.
[56] Andrew E R, Peplinska B. NMR study of solid cholesterol[J]. Mol Phys, 1990, 70(3): 505-512.
[57] Buszko M L, Andrew E R. NMR study of solid lactic acid (2-hydroxypropanoic acid)[J]. Mol Phys, 1992, 76(1): 83-87.
[58] Andrew E R, Kempka M. Proton NMR-study of molecular-motion in solid cortisone[J]. Solid State Nucl Magn Reson, 1993, 2(5): 261-264.
[59] Andrew E R, Kempka M, Szyczewski A. Molecular dynamics of solid cortisol studied by NMR[J]. Mol Phys, 1996, 88(3): 605-610.
[60] Andrew E R, Peplinska B, Kempka M. Molecular dynamics in solid L-adrenaline by proton NMR[J]. Solid State Nucl Magn Reson, 1998, 10(3): 117-121.
[61] Andrew E R, Radomski J M. Molecular-dynamics in polycrystalline testosterone studied by proton NMR[J]. Solid State Nucl Magn Reson, 1993, 2(1-2): 57-60.
[62] Andrew E R, Kempka M. Molecular motions in solid estradiol studied by nuclear-magnetic-resonance spectroscopy[J]. Solid State Nucl Magn Reson, 1995, 4(4): 249-253.
[63] Andrew E R, Kempka M, Radomski J M, et al. Molecular dynamics in solid anhydrous beta-estradiol studied by H-1 NMR[J]. Solid State Nucl Magn Reson, 1999, 14(2): 91-94.
[64] Andrew E R, Peplinska B. Molecular motion in solid all-trans retinoic acid (vitamin A acid) by proton NMR[J]. Solid State Nucl Magn Reson, 1998, 13(1-2): 39-43.
[65] Andrew E R, Glowinkowski S. Molecular dynamics in solid riboflavin as studied by H-1 NMR[J]. Solid State Nucl Magn Reson, 2000, 18(1-4): 89-96.
[66] Andrew E R, Glowinkowski S, Radomski J, et al. Molecular dynamics in solid pregnenolone studied by H-1 spin-lattice relaxation[J]. Solid State Nucl Magn Reson, 2000, 15(4): 227-230. |