[1] Todd D, Gerald F, John P, et al. GPS clocks in space: current performance and plans for the Future[C]. Virginia: 34th Annual Precise Time and Time Interval (PTTI) Meeting, 2002. 175.
[2] Rochat P, Schweda H, Mileti G, et al. Development of rubidium frequency standards at Neuchatel Observatory[C]. Ineternational frequency control symposium, IEEE, 1994. 716.
[3] Xia B H, Zhong D, An S F, et al. Characteristics of a novel kind of miniaturized cavity-cell assembly for rubidium frequency standards[C]. IEEE Trans Instrum Meas, 2006, (55): 1000.
[4] Qi Feng(祁峰), Zhao Feng(赵峰), Wang Fang(王芳), et al. A physics package with high S/N ratio for rubidium atomic frequency standards(一种高信噪比铷原子频标物理系统)[J]. Acta Metrologica Sinica(计量学报), 2011, 32(1): 80-84.
[5] Peng Zheng-qing(彭正琴), Tu Jian-hui(涂建辉), Zhai Hao(翟浩), et al. Simulation and experiments for the TE111 microwave cavity of rubidium frequency standard(铷原子频标TE111微波腔的仿真分析及实验)[J]. Journal of Astronautic Metrology and Measurement(宇航计测技术), 2008, 28(3): 26-30.
[6] Luo Xiang-dong(雒向东), Luo Cong-tai(罗崇泰). A comparison of the properties of magnetron type cavity and empty type cavity in smallscaled Hydrogen maser(小型氢频标磁控管微波腔与空型腔性能比较)[J]. Journal of Gansu Sciences(甘肃科学学报), 2009, 21(1): 24-27.
[7] Frueholz R P, Camparo J C. Microwave field strength measurement in a rubidium clock cavity via adiabatic rapid passage[J]. J Appl Phys, 1985, 57(3): 704-708.
[8] Vanier J, Audoin C. The Quantum Physics of Atomic Frequency Standards[M]. Bristol, UK: Adam Hilger, 1989. 1 282.
[9] Vanier J. On the signal-to-noise ratio and short term stability of passive rubidium frequendy standards[J]. IEEE T Instrum Meas, 1981, IM 30, 277-282. |