[1] Raichle M E, Mintun M A. Brain work and brain imaging[J]. Annu Rev Neurosci, 2006, 29: 449-476.
[2] Ogawa S, Lee T M, Kay A R, et al. Brain magnetic resonance imaging with contrast dependent on blood oxygenation[J]. Proc Natl Acad Sci USA, 1990, 87: 9 868-9 872.
[3] Fox P T, Raichle M E, Mintun M A, et al. Nonoxidative glucose consumption during focal physiologic neural activity[J]. Science, 1988, 241: 462-464.
[4] Raichle M E, MacLeod A M, Snyder A Z, et al. A default mode of brain function[J]. Proc Natl Acad Sci USA, 2001, 98: 676-682.
[5] Biswal B, Yetkin F Z, Haughton V M, et al. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI[J]. Magn Reson Med, 1995, 34: 537-541.
[6] Friston K J, Frith C D, Liddle P F, et al. Funtional connectivity: the principal-component analysis of large (PET) data sets[J]. J Cereb Blood Flow Metab, 1993, 13: 5-14.
[7] Xiong J, Parsons L M, Gao J H, et al. Interregional connectivity to primary motor cortex revealed using MRI resting state images[J]. Hum Brain Mapp, 1999, 8: 151-156.
[8] Lowe M J, Mock B J, Sorenson J A. Functional connectivity in single and multislice echoplanar imaging using resting state fluctuations[J]. Neuroimage, 1998, 7: 119-132.
[9] Cordes D, Haughton V M, Arfanakis K, et al. Mapping functionally related regions of brain with functional connectivity MR imaging[J]. AJNR Am J Neuroradiol, 2000, 21: 1 636-1 644.
[10] Cordes D, Haughton V M, Arfanakis K, et al. Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data[J]. AJNR Am J Neuroradiol, 2001, 22: 1 326-1 333.
[11] Hampson M, Peterson B S, Skudlarski P, Detection of functional connectivity using temporal correlations in MR images[J]. Hum Brain Mapp, 2002, 15: 247-262.
[12] Birn R M, Diamond J B, Smith M A, et al. Separating respiratory-variation-related fluctuations from neuronalactivity-related fluctuations in fMRI[J]. Neuroimage, 2006, 31: 1 536-1 548.
[13] Wise R G, Ide K, Poulin M J, et al.Resting fluctuations in arterial carbon dioxide induce significant low frequency variations in BOLD signal[J]. Neuroimage, 2004, 21: 1 652-1 664.
[14] Shmueli K, van Gelderen P, de Zwart J A, et al. Lowfrequency fluctuations in the cardiac rate as a source of variance in the resting-state fMRI BOLD signal[J]. NeuroImage, 2007, 38: 306-320.
[15] Beall E B, Lowe M J. Isolating physiologic noise sources with independently determined spatial measures[J]. Neuroimage, 2007, 37: 1 286-1 300.
[16] Cordes D, Haughton V, Carew J D, et al. Hierachical clustering to measure connectivity in fMRI resting-state data[J]. Magn Reson Imaging, 2002, 20: 305-317.
[17] Calhoun V D, Adali T, Pearlson G D, et al. Spatial and temporal independent component analysis of functional MRI data containing a pair of task-related waveforms[J]. Hum Brain Map, 2001, 13: 43-53.
[18] Peltier S J, Polk T A,Noll D C. Detecting low frequency functional connectivity in fMRI using a self organizing map (SOM) algorithm[J]. Hum Brain Mapp, 2003, 20: 220-226.
[19] Salvador R, Martínez A, Pomarol-Clotet E, et al. Frequency based mutual information measures between clusters of brain regions in functional magnetic resonance imaging[J]. Neuroimage, 2007, 35: 83-88.
[20] Achard S, Salvador R, Whitcher B, et al. A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs[J]. J Neurosci, 2006, 26: 63-72.
[21] Zang Y, Jiang T, Lu Y, et al. Regional homogeneity approach to fMRI data analysis[J]. Neuroimage, 2004, 22: 394-400.
[22] Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems[J]. Nat Rev Neurosci. 2009, 10: 186-198.
[23] Watts D J, Strogatz S H. Collective dynamics of “small-world” networks[J]. Nature, 1998, 393: 440-442.
[24] Salvador R, Suckling J, Coleman M R, et al. Neurophysiological architecture of functional magnetic resonance images of human brain[J]. Cereb Cortex, 2005, 15: 1 332-1 342.
[25] Van den Heuvel M P, Stam C J, Boersma M, et al. Small-world and scale-free organization of voxel-based resting-state functional connectivity in the human brain[J]. Neuroimage, 2008, 43: 528-539.
[26] Roy A K, Shehzad Z, Margulies D S, et al. Functional connectivity of the human amygdala using resting state fMRI[J]. Neuroimage, 2009, 45: 614-626.
[27] Vincent J L, Snyder A Z, Fox M D, et al. Coherent spontaneous activity identifies a hippocampal-parietal mnemonic network[J]. J Neurophysiol, 2006, 96: 3 517-3 531.
[28] Damoiseaux J S, Rombouts S A, Barkhof F, et al. Consistent resting-state networks across healthy subjects[J]. Proc Natl Acad Sci USA, 2006, 103: 13 848-13 853.
[29] Yan C, Liu D, He Y, et al. Spontaneous brain activity in the default mode network is sensitive to different resting-state conditions with limited cognitive load[J]. PLoS One, 2009, 4: e5743.
[30] Horovitz S G, Fukunaga M, de Zwart J A, et al. Low frequency BOLD fluctuations during resting wakefulness and light sleep: A simultaneous EEG-fMRI study[J]. Hum Brain Mapp, 2008, 29: 671-682.
[31] Greicius M D, Kiviniemi V, Tervonen O, et al. Persistent defaultmode network connectivity during light sedation[J]. Hum Brain Mapp, 2008, 29: 839-847.
[32] Boly M, Tshibanda L, Vanhaudenhuyse A, et al. Functional connectivity in the default network during resting state is preserved in a vegetative but not in a brain dead patient[J]. Hum Brain Mapp, 2009, 30: 2 393-2 400.
\[33\]〖KG*2〗van den Heuvel M P, Stam C J, Kahn R S, et al. Efficiency of Functional Brain Networks and Intellectual Performance[J]. J Neurosci, 2009, 29: 7 619-7 624.
[34] Hampson M, Driesen N R, Skudlarski P, et al. Brain connectivity related to working memory performance[J]. J Neurosci, 2006, 26: 13 338-13 343.
[35] Seeley W W, Menon V, Schatzberg A F, et al. Dissociable intrinsic connectivity networks for salience processing and executive control[J]. J Neurosci, 2007, 27: 2 349-2 356.
[36] Waites A B, Stanislavsky A, Abbott D F, et al. Effect of prior cognitive state on resting state networks measured with functional connectivity[J]. Hum Brain Mapp, 2005, 24: 59-68.
[37] Shulman G L, Fiez J A, Corbetta M, et al. Common blood flow changes across visual tasks: II. Decreases in cerebral cortex[J]. J Cognit Neurosci, 1997, 9: 648-663.
[38] Mazoyer B, Zago L, Mellet E, et al. Cortical networks for working memory and executive functions sustain the conscious resting state in man[J]. Brain Res Bull, 2001, 54: 287-298.
[39] Greicius M D, Krasnow B, Reiss A L, et al. Functional connectivity in the resting brain: A network analysis of the default mode hypothesis[J]. Proc Natl Acad Sci USA, 2003, 100: 253-258.
[40] Cavanna A E, Trimble M R. The precuneus: a review of its functional anatomy and behavioural correlates[J]. Brain, 129: 564-583.
[41] Laureys S, Goldman S, Phillips C, et al. Impaired effective cortical connectivity in vegetative state[J]. Neuroimage. 1999, 9: 377-382.
[42] Hagmann P, Cammoun L, Gigandet X, et al. Mapping the structural core of human cerebral cortex[J]. PLoS Biol, 2008, 6: E159.
[43] Fransson P, Skiold B, Horsch S, et al. Resting-state networks in the infant brain\[J\]. Proc Natl Acad Sci USA, 2007, 104: 15 531-15 536.
[44] Fair D A, Cohen A L, Dosenbach N U, et al. The maturing architecture of the brain's default network[J]. Proc Natl Acad Sci USA, 2008, 105: 4 028-4 032.
[45] Thomason M E, Chang C E, Glover G H, et al. Default-mode function and task-induced deactivation have overlapping brain substrates in children[J]. Neuroimage, 2008, 41: 1 493-1 503.
[46] Damoiseaux J S, Beckmann C F, Arigita E J, et al. Reduced resting-state brain activity in the “default network” in normal aging[J]. Cerebral Cortex, 2008, 18: 1 856-1 864.
[47] Gusnard D A, Akbudak E, Shulman G L, et al. Medial prefrontal cortex and self-referential mental activity: Relation to a default mode of brain function[J]. Proc Natl Acad Sci USA, 2001, 98: 4 259-4 264.
[48] Mason M F, Norton M I, Van Horn J D, et al. Wandering minds: The default network and stimulus-independent thought[J]. Science, 2007, 315: 393-395.
[49] Fox M D, Snyder A Z, Vincent J L, et al. The human brain is intrinsically organized into dynamic, anticorrelated functional networks[J]. Proc Natl Acad Sci USA, 2005, 102: 9 673-9 678.
[50] Fransson P. Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis[J]. Hum Brain Mapp, 2005, 26: 15-29.
[51] Kelly A M, Uddin L Q, Biswal B B, et al. Competition between functional brain networks mediates behavioral variability[J]. Neuroimage, 2008, 39: 527-537.
[52] Quigley M, Cordes D, Turski P, et al. Role of the corpus callosum in functional connectivity[J]. AJNR Am J Neuroradiol, 2003, 24: 208-212.
[53] van den Heuvel M P, Mandl R C, Kahn R S, et al. Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain[J]. Hum Brain Mapp, 2009, 30: 3 127-3 141.
[54] Honey C J, Sporns O, Cammoun L, et al. Predicting human resting-state functional connectivity from structural connectivity[J]. Proc Natl Acad Sci USA, 2009, 106 : 2 035-2 040.
[55] Greicius M D, Srivastava G, Reiss A L, et al. Defaultmode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI[J]. Proc Natl Acad Sci USA, 2004, 101: 4 637-4 642.
[56] Sorg C, Riedl V, Muhlau M, et al. Selective changes of resting-state networks in individuals at risk for Alzheimer's disease[J]. Proc Natl Acad Sci USA, 2007, 104: 18 760-18 765.
[57] Liang M, Zhou Y, Jiang T, et al. Widespread functional disconnectivity in schizophrenia with resting-state functional magnetic resonance imaging[J]. Neuro Report, 2006, 17: 209-213.
[58] Greicius M D, Flores B H, Menon V, et al. Resting-state functional connectivity in major depression: Abnormally increased contributions from subgenual cingulate cortex and thalamus[J]. Biol Psychiatry, 2007, 64: 429-437.
[59] Anand A, Li Y, Wang Y, et al. Activity and connectivity of brain mood regulating circuit in depression: a functional magnetic resonance study[J]. Biol Psychiatry, 2005, 57: 1 079-1 088.
[60] Lowe M J, Phillips M D, Lurito J T, et al. Multiple sclerosis: low-frequency temporal blood oxygen leveldependent fluctuations indicate reduced functional connectivity initial results[J]. Radiology, 2002, 224: 184-192.
[61] Waites A B, Briellmann R S, Saling M M, et al. Functional connectivity networks are disrupted in left temporal lobe epilepsy[J]. Ann Neurol, 2006, 59: 335-343.
[62] Zang Y F, He Y, Zhu C Z, et al. Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI[J]. Brain Dev, 2007, 29: 83-91.
[63] Kennedy D P, Redcay E, Courchesne E. Failing to deactivate: resting functional abnormalities in autism[J]. Proc Natl Acad Sci USA, 2006, 103: 8 275-8 280.
[64] Vincent J L, Patel G H, Fox M D, et al. Intrinsic functional architecture in the anesthetized monkey brain[J]. Nature, 2007, 447: 83-86.
[65] Kathleen A W, Matthew M, Waqas M, et al. Comparison of a-chloralose, medetomidine and isoflurane anesthesia for functional connectivity mapping in the rat[J]. Magn Reson Imaging, 2010(in press)
[66] Pawela C P, Biswal B B, Cho Y R, et al. Restingstate functional connectivity of the rat brain[J]. Magn Reson Med, 2008, 59: 1 021-1 029.
[67] Niessing J, Ebisch B, Schmidt K E, et al. Hemodynamic signals correlate tightly with synchronized gamma oscillations[J]. Science, 2005, 309: 948-951. |