[1] Levitt M. Spin Dynamics - Basics of Nuclear Magnetic Resonance[M]. Wiley: Chichester, 2008.
[2] Torres A M, Dela Cruz R, Price W S. Removal of J-coupling peak distortion in PGSE experiments[J]. J Magn Reson, 2008, 193: 311-316.
[3] Price W S. NMR Studies of Translational Motion: Principles and Applications[M]. Cambridge: Cambridge University Press, 2009.
[4] Hahn E L. Spin echoes[J]. Phys Rev, 1950, 80: 580-594.
[5] Stejskal E O, Tanner J E. Spin diffusion measurements: Spin echoes in the presence of a time-dependent field gradient[J]. J Chem Phys, 1965, 42: 288-292.
[6] Callaghan P T, Trotter C M, Jolley K W. A pulsed field gradient system for a fourier transform spectrometer[J]. J Magn Reson, 1980, 37: 247-259.
[7] Price W S, Chang W T, Kwok W M, et al. Design and construction of a pulsed field-gradient NMR probe for a high-field superconducting magnet[J]. J Chin Chem Soc (Taipei), 1994, 41: 119-127.
[8] Stilbs P. Fourier transform pulsed-gradient spin-echo studies of molecular diffusion\[J\]. Prog NMR Spectrosc, 1987, 19: 1-45.
[9] K-rger J, Pfeifer H, Heink W. Principles and applications of self-diffusion measurements by nuclear magnetic resonance[J]. Adv Magn Reson, 1988, 12: 1-89.
[10] Johnson Jr C S. Diffusion ordered nuclear magnetic resonance spectroscopy: Principles and applications[J]. Prog NMR Spectrosc, 1999, 34: 203-256.
[11] Stallmach F, Galvosas P. Spin echo NMR diffusion studies. in: Webb G A, (Ed.), Annual Reports on NMR Spectroscopy[C]. London: Elsevier, 2007, 51-131.
[12] Mazo R M. Brownian Motion: Fluctuations, Dynamics, and Applications[M]. Oxford, 2009.
[13] Sutherland W. A dynamical theory of diffusion for nonelectrolytes and the molecular mass of albumin\[J\]. Philos Mag, S.6, 1905, 9: 781-785.
[14] Einstein A. Investigations on the Theory of Brownian Movement[M]. New York: Dover, 1956.
[15] Edward J T. Molecular volume and the Stokes-Einstein equation[J]. J Chem Ed, 1970, 47: 261-270.
[16] Cantor C R, Schimmel P R. Biophysical Chemistry, Part II: Techniques for the Study of Biological Structure and Function[M]. New York: W.H. Freeman, 1980.
[17] Truskey G A, Yuan F, Katz D F. Transport Phenomena in Biological Systems[M]. New York: Prentice Hall, 2003.
[18] Callaghan P T, Eccles C D, Seymour J D. An earth's field nuclear magnetic resonance apparatus suitable for pulsed gradient spin echo measurements of self-diffusion under arctic conditions[J]. Rev Sci Instrum, 1997, 68: 4 263-4 270.
[19] Stejskal E O. Use of spin echoes in a pulsed magnetic-field gradient to study anisotropic restricted diffusion and flow[J]. J Chem Phys, 1965, 43: 3 597-3 603.
[20] Tanner J E, Stejskal E O. Restricted self-diffusion of protons in colloidal systems by the pulsed-gradient, spin-echo method[J]. J Chem Phys, 1968, 49: 1 768-1 777.
[21] Callaghan P T. How Two Pairs of Gradient Pulses Give Access to New Information about Molecular Dynamics. in: K-rger J, Grinberg F, Heitjans P, (Eds.), Diffusion Fundamentals[C]. Leipzig: University of Leipzig, 2005, 321-338.
[22] Kärger J, Heink W. The propagator representation of molecular transport in microporous crystallites[J]. J Magn Reson, 1983, 51: 1-7.
[23] Callaghan P T. Pulsed field gradient nuclear magnetic resonance as probe of liquid state molecular organization[J]. Aust J Phys, 1984, 37: 359-387.
[24] Callaghan P T. A. Coy PGSE NMR and Molecular Translational Motion in Porous Media. in: R. Tycko (Ed.), NMR Probes and Molecular Dynamics[C]. Kluwer, Dordrecht, 1994, 489-523.
[25] Linse P, Soderman O. The validity of the short-gradient-pulse approximation in NMR studies of restricted diffusion. Simulations of molecules diffusing between planes, in cylinders and spheres[J]. J Magn Reson A, 1995, 116: 77-86.
[26] Packer K J. Diffusion & Flow in Liquids. in: Grant D M, Harris R K, (Eds.), Encyclopedia of Nuclear Magnetic Resonance[C]. New York: Wiley, 1996, 1 615-1 626.
[27] Hrovat M I, Wade C G. NMR pulsed gradient diffusion measurements. II. Residual gradients and lineshape distortions[J]. J Magn Reson, 1981, 45: 67-80.
[28] Price W S, Hayamizu K, Ide H, et al. Strategies for diagnosing and alleviating artifactual attenuation associated with large gradient pulses in PGSE NMR diffusion measurements[J]. J Magn Reson, 1999, 139: 205-212.
[29] Nixon T W, McIntyre S, Rothman D L, et al. Compensation of gradient-induced magnetic field perturbations[J]. J Magn Reson, 2008, 192: 209-217.
[30] Trappeniers N J, Gerritsma C J, Oosting P H. The self-diffusion coefficient of water, at 25 ℃, by means of spin-echo technique[J]. Phys Lett, 1965, 18: 256-257.
[31] Murday J S. Measurement of magnetic field gradient by its effect on the NMR free induction decay[J]. J Magn Reson, 1973, 10: 111-120.
[32] Lamb D M, Grandinetti P J, Jonas J. Fixed field gradient NMR diffusion measurements using bessel function fits to the Spin-Echo signal[J]. J Magn Reson, 1987, 72: 532-539.
[33] Hrovat M I, Wade C G. NMR Pulsed-Gradient diffusion, easurements I. Spin-Echo stability and gradient calibration[J]. J Magn Reson, 1981, 44: 62-75.
[34] Wright A C, Bataille H, Ong H H, et al. Construction and calibration of a 50 T/m z-gradient coil for quantitative diffusion microimaging[J]. J Magn Reson, 2007, 186: 17-25.
[35] Sorland G H, Aksnes D. Artefacts and pitfalls in diffusion measurements by NMR[J]. Magn Reson Chem, 2002, 40: S139-S146.
[36] Yadav N, Torres A M, Price W S. An improved approach to calibrating high magnetic field gradients for pulsed field gradient experiments[J]. J Magn Reson, 2008, 194: 25-28.
[37] Williams W D, Seymour E F W, Cotts R M. A Pulsed-Gradient Multiple-Spin-Echo NMR technique for measuring diffusion in the presence of background magnetic field gradients[J]. J Magn Reson, 1978, 31: 271-282.
[38] Karlicek R F, Lowe Jr I J. A modified pulsed gradient technique for measuring diffusion in the presence of large background gradients\[J\]. J Magn Reson, 1980, 37: 75-91.
[39] Cotts R M, Hoch M J R, Sun T, et al. Pulsed field gradient stimulated echo methods for improved NMR diffusion measurements in heterogeneous systems\[J\]. J Magn Reson, 1989, 83: 252-266.
[40] Latour L L, Li L, Sotak C H. Improved PFG Stimulated-Echo method for the measurement of diffusion in inhomogeneous fields[J]. J Magn Reson B, 1993, 101: 72-77.
[41] SΦrland G H, Hafskjold B, Herstad O. A Stimulated-Echo method for diffusion measurements in heterogeneous media using pulsed field gradients[J]. J Magn Reson, 1997, 124: 172-176.
[42] Price W S. Pulsed field gradient NMR as a tool for studying translational diffusion, Part II. experimental aspects[J]. Concepts Magn Reson, 1998, 10: 197-237.
[43] SΦrland G H, Aksnes D, Gjerdker L. A pulsed field gradient Spin-Echo method for diffusion measurements in the presence of internal gradients[J]. J Magn Reson, 1999, 137: 397-401.
[44] Schachter M, Does M D, Anderson A W, et al. Measurements of restricted diffusion using an oscillating gradient Spin-Echo sequence[J]. J Magn Reson, 2000, 147: 232-237.
[45] Seland J G, SΦrland G H, Zick K, et al. Diffusion measurements at long observation times in the presence of spatially variable internal magnetic field gradients[J]. J Magn Reson, 2000, 146: 14-19.
[46] Zhang Xu, Li C G, Ye C H, et al. Determination of molecular Self-Diffusion coefficient using Multiple Spin-Echo- NMR spectroscopy with removal of convection and background gradient artifacts[J]. Anal Chem, 2001, 73: 3 528-3 534.
[47] Duh A, Mohoric A, Stepisnik J, et al. The elimination of magnetic susceptibility artifacts in the micro-image of liquid-solid interfaces: internal gradient modulation by the CPMG RF train[J]. J Magn Reson, 2003, 160: 47-51.
[48] Mohoric A. A modified PGSE for measuring diffusion in the presence of static magnetic field gradients[J]. J Magn Reson, 2005, 174: 223-228.
[49] Zheng G, Price W S. Suppression of background gradients in (B0 GradientBased) NMR diffusion experiments[J]. Concepts Magn Reson, 2007, 30A: 261-277.
[50] Finsterbusch J. Improved diffusion-weighting efficiency of pulsed gradient stimulated echo MR measurements with background gradient cross-term suppression[J]. J Magn Reson, 2008, 191: 282-290.
[51] Zupancic I. Effect of the background gradients on PGSE NMR diffusion measurements[J]. Solid State Commun, 1988, 65: 199-200.
[52] Zhong J, Gore J C. Studies of restricted diffusion in heterogeneous media containing variations in susceptibility[J]. Magn Reson Med, 1991, 19: 276-284.
[53] Sun P Z, Seland J G, Cory D. Background gradient suppression in pulsed gradient stimulated echo measurements[J]. J Magn Reson, 2003, 161: 168-173.
[54] Sun P Z, Smith S A, Zhou J. Analysis of the magic asymmetric gradient stimulated echo sequence with shaped gradients[J]. J Magn Reson, 2004, 171: 324-329.
[55] Sun P Z. Improved diffusion measurement in heterogeneous systems using the magic asymmetric gradient stimulated echo (MAGSTE) technique[J]. J Magn Reson, 2007, 187: 177-183.
[56] Galvosas P, Stallmach F, Krger J. Background gradient suppression in stimulated echo NMR diffusion studies using magic pulsed field gradient ratios[J]. J Magn Reson, 2004, 166: 164-173.
[57] Zheng G, Price W S. MAG-PGSTE: A New STE-based PGSE NMR sequence for the determination of diffusion in magnetically inhomogeneous samples[J]. J Magn Reson, 2008, 195: 40-44.
[58] MorrisK F, Johnson Jr C S. Diffusion-ordered two-dimensional nuclear magnetic resonance spectroscopy[J]. J Am Chem Soc, 1992, 114: 3 139-3 141.
[59] Otto W H, Larive C K. Improved Spin-Echo-Edited NMR diffusion measurements[J].J Magn Reson, 2001, 153: 273-276.
[60] Thrippleton M J, Keeler J. Elimination of Zero-Quantum interference in Two-Dimensional NMR spectra\[J\]. Angew Chem (Int Ed), 2003, 42: 3 938-3 941.
[61] Torres A M, Zheng G, Price W S, J-compensated PGSE: an improved NMR diffusion experiment with fewer phase distortions[J]. Magn Reson Chem, 2010, 48: 129-133.
[62] Pelta M D, Barjat H, Morris G A, et al. Pulse sequences for High-Resolution Diffusion-Ordered spectroscopy (HR-DOSY)[J]. Magn Reson Chem, 1998, 36: 706-714.
[63] Guéron M, Plateau P. Water Signal Suppression in NMR of Biomolecules. in: D. M. Grant and R. K. Harris (Eds.), Encyclopedia of Nuclear Magnetic Resonance[C]. New York: Wiley, 1996, 4 931-4 942.
[64] Moonen C T W, Van Zijl P C M. Water Suppression in Proton MRS of Humans & Animals. in: Grant D M, Harris R K, (Eds.), Encyclopedia of Nuclear Magnetic Resonance[C]. New York: Wiley, 1996, 4 943-4 955.
[65] Price W S. Water Signal Suppression in NMR Spectroscopy. in: Webb G A, (Ed.), Annual Reports on NMR Spectroscopy[C]. London: Academic Press, 1999, 289-354.
[66] Liu M, Mao X -A. Solvent Suppression Methods in NMR Spectroscopy. in: Lindon J C, Tranter G E, Holmes J L, (Eds.), Encyclopedia of Spectroscopy and Spectrometry\[C\]. London: Academic Press, 2000, 2 145-2 152.
[67] McKay R T. Recent Advances in Solvent Suppression for Solution NMR: A Practical Reference. in: Webb G A, (Ed.), Annual Reports on NMR Spectroscopy[C]. London: Academic Press, 2009, 33-76.
[68] Zheng G, Price W S. Solvent signal suppression in NMR[J]. Prog NMR Spectrosc, 2010, 56: 267-288.
[69] Piotto M, Saudek V, Sklenár V. Gradient-Tailored excitation for singlequantum NMR spectroscopy of aqueous solutions[J]. J Biomol NMR, 1992, 2: 661-665.
[70] Sklenár V, Piotto M, Leppik R, et al. Gradient-Tailored water suppression for 1H-15N HSQC experiments optimized to retain full sensitivity[J]. J Magn Reson A, 1993, 102: 241-245.
[71] Price W S, Elwinger F, Vigouroux C, et al. PGSE-WATERGATE, a New tool for NMR Diffusion-Based studies of Ligand-Macromolecule binding[J]. Magn Reson Chem, 2002, 40: 391-395.
[72] Zheng G, Stait-Gardner T, Anil Kumar P G, et al. PGSTE-WATERGATE: An STE-based PGSE NMR sequence with excellent solvent suppression[J]. J Magn Reson, 2008, 191: 159-163.
[73] Zheng G, Torres A M, Price W S. Solvent suppression using phase-modulated binomial-like sequences and applications to diffusion measurements[J]. J Magn Reson, 2008, 194: 108-114.
[74] Zheng G, Price W S. Simultaneous convection compensation and solvent suppression in biomolecular NMR diffusion experiments[J]. J Biomol NMR, 2009, 45: 295-299.
[75] Liu M, Mao X A, Ye C, et al. Improved WATERGATE pulse sequences for solvent suppression in NMR Spectroscopy[J]. J Magn Reson, 1998, 132: 125-129.
[76] Carravetta M, Levitt M H. Long-Lived nuclear spin states in high-field solution NMR\[J\]. J Am Chem Soc, 2004, 126: 6 228-6 229.
[77] Cavadini S, Dittmer J, Antonijevic S, et al. Slow diffusion by singlet state NMR spectroscopy[J]. J Am Chem Soc, 2005, 127: 15 744-15 748.
[78] Ahuja P, Sarkar R, Vasos P R, et al. Diffusion coefficients of biomolecules using long-lived spin states[J]. J Am Chem Soc, 2009, 131: 7 498-7 499.
[79] Yadav N N, Torres A M, Price W S. NMR q-space imaging of macroscopic pores using singlet spin states[J]. J Magn Reson, 2010, 204: 346-348.
[80] Packer K J. The study of slow coherent molecular motion by pulsed nuclear magnetic resonance[J]. Molec Phys, 1969, 17: 355-368.
[81] Song Y Q, Hürlimann M D, Flaum C. A method for rapid characterization of diffusion[J]. J Magn Reson, 2003, 161: 222-233.
[82] van Gelderen P, Olson A, Moonen C T W. A single-hot diffusion experiment[J]. J Magn Reson A, 1993, 103: 105-108.
[83] Doran S J, Décorps M, Robust A. Single-hot method for measuring diffusion coefficients using the “Burst”sequence[J]. J Magn Reson A, 1995, 117: 311-316.
[84] Peled S, Tseng C H, Sodickson A, et al. Single-shot diffusion measurement in laser-polarized gas[J]. J Magn Reson, 1999, 140: 320-324.
[85] Song Y Q, Tang X. A one-shot method for measurement of diffusion[J]. J Magn Reson, 2004, 170: 136-148.
[86] Buckley C, Hollingsworth C A, Sederman A J, et al. Applications of fast diffusion measurement using Difftrain[J]. J Magn Reson, 2003, 161: 112-117.
[87] Stamps J P, Ottink B, Visser J M, et al. Difftrain: A novel approach to a true spectroscopic single-scan diffusion measurement[J]. J Magn Reson, 2001, 151: 28-31.
[88] Sendhil Velan S, Chandrakumar N. Novel NMR experiments to measure self-diffusion coefficients in solution[J]. Proc Indian Acad Sci (Chem Sci), 1994, 106: 1 661-1 669.
[89] Sendhil Velan S, Chandrakumar N. Highresolution NMR measurement of molecular self-diffusion by fast Multi-Spin-Echo diffusion studies[J]. J Magn Reson A, 1996, 123: 122-125.
[90] Bodenhausen G, Ernst R R. Direct determination of rate constants of slow dynamic processes by two-dimensional “accordion” spectroscopy in nuclear magnetic resonance[J]. J Am Chem Soc, 1982, 104: 1 304-1 309.
[91] Millet O, Pons M. A new method for measuring diffusion coefficients by 2D NMR using accordion spectroscopy[J]. J Magn Reson, 1998, 131: 166-169.
[92] Bohlen J M, Burghardt I, Rey M, et al. Frequency-modulated “Chirp” pulses for broadband inversion recovery in magnetic resonance[J]. J Magn Reson, 1990, 90: 183-191.
[93] Loening N M, Keeler J, Morris G A. One-Dimensional DOSY[J]. J Magn Reson, 2001, 153: 103-112.
[94] Pelta M D, Morris G A, Stchedroff M J, et al. A oneshot sequence for high resolution diffusion ordered spectroscopy[J]. Magn Reson Chem, 2002, 40: S147-S152.
[95] Stait-Gardner T, Anil Kumar P G, Price W S. Steady state effects in PGSE NMR diffusion experiments[J]. Chem Phys Lett, 2008, 462: 331-336. |