波谱学杂志 ›› 2024, Vol. 41 ›› Issue (4): 405-417.doi: 10.11938/cjmr20243096

• 研究论文 • 上一篇    下一篇

基于可穿戴式脑磁图的视觉混合脑机接口研究

王晨旭1,2, 郭旭1,2, 王慧2,3, 张欣2,3, 常严2,3, 郭清乾2,3, 胡涛2,3, 冯晓宇3, 杨晓冬1,2,3,*()   

  1. 1.徐州医科大学 医学影像学院,江苏 徐州 221004
    2.中国科学院苏州生物医学工程技术研究所,江苏 苏州 215163
    3.季华实验室,广东 佛山 528200
  • 收稿日期:2024-02-02 出版日期:2024-12-05 在线发表日期:2024-03-11
  • 通讯作者: * Tel: 18900616030, E-mail: xiaodongyang@sibet.ac.cn.
  • 基金资助:
    季华实验室项目——新一代可穿戴脑磁图仪研制(X190131TD190)

Study of Visual Hybrid Brain-Computer Interface Based on Wearable Magnetoencephalogram

WANG Chenxu1,2, GUO Xu1,2, WANG Hui2,3, ZHANG Xin2,3, CHANG Yan2,3, GUO Qingqian2,3, HU Tao2,3, FENG Xiaoyu3, YANG Xiaodong1,2,3,*()   

  1. 1. School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, China
    2. Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
    3. Jihua Laboratory, Foshan 528000, China
  • Received:2024-02-02 Published:2024-12-05 Online:2024-03-11
  • Contact: * Tel: 18900616030, E-mail: xiaodongyang@sibet.ac.cn.

摘要:

新兴的可穿戴式脑磁图技术为脑机接口(BCI)提供高质量数据奠定了基础.为探究可穿戴式脑磁图应用于视觉混合BCI上的可行性,本文基于稳态视觉诱发场(SSVEF)和Alpha波设计了SSVEF-Alpha混合BCI,并在不同分类模型上进行了性能对比.结果表明,基于用户依赖(UD)的训练方法,混合BCI 6分类平均分类准确率为(93.29±1.69)%,信息传输速率可达86.81 bits/min,且使用短数据长度进行用户独立(UI)的训练方法比免训练的方法更具优越性.本研究验证了视觉混合BCI的有效性,为进一步开发设计可穿戴式脑磁图的BCI应用产品提供参考范例.

关键词: 脑机接口, 可穿戴脑磁图, 稳态视觉诱发场, Alpha波, 分类准确率, 信息传输速率

Abstract:

The emerging wearable magnetoencephalography technology lays the foundation for brain-computer interface to provide high-quality data. To explore the feasibility of applying wearable magnetoencephalography in visual hybrid brain-computer interface, a SSVEF-Alpha hybrid brain-computer interface is designed based on steady-state visual evoked field and Alpha wave, and the performance is compared with different classification models. The results show that based on the user-dependent training method, the average classification accuracy of hybrid brain-computer interface is (93.29±1.69)%, the information transmission rate can reach 86.81 bits/min. And the user-independent training method with short data length shows superiority over the training-free method. This study verifies the effectiveness of visual hybrid brain-computer interface and provides a reference example for further development and design of brain-computer interface products of wearable magnetoencephalography.

Key words: brain-computer interface, wearable magnetoencephalogram, steady-state visual evoked field, Alpha wave, classification accuracy, information transmission rate

中图分类号: