数学物理学报(英文版) ›› 2024, Vol. 44 ›› Issue (1): 173-188.doi: 10.1007/s10473-024-0109-z

• • 上一篇    下一篇

SOME PROPERTIES OF THE INTEGRATION OPERATORS ON THE SPACES F(p,q,s)*

Jiale Chen   

  1. School of Mathematics and Statistics, Shaanxi Normal University, Xi'an 710119, China
  • 收稿日期:2022-10-08 修回日期:2023-07-13 出版日期:2024-02-25 发布日期:2024-02-27
  • 作者简介:Jiale Chen, E-mail: jialechen@snnu.edu.cn
  • 基金资助:
    Fundamental Research Funds for the Central Universities (GK202207018) of China.

SOME PROPERTIES OF THE INTEGRATION OPERATORS ON THE SPACES F(p,q,s)*

Jiale Chen   

  1. School of Mathematics and Statistics, Shaanxi Normal University, Xi'an 710119, China
  • Received:2022-10-08 Revised:2023-07-13 Online:2024-02-25 Published:2024-02-27
  • About author:Jiale Chen, E-mail: jialechen@snnu.edu.cn
  • Supported by:
    Fundamental Research Funds for the Central Universities (GK202207018) of China.

摘要: We study the closed range property and the strict singularity of integration operators acting on the spaces F(p,pα2,s). We completely characterize the closed range property of the Volterra companion operator Ig on F(p,pα2,s), which generalizes the existing results and answers a question raised in [A. Anderson, Integral Equations Operator Theory, 69 (2011), no. 1, 87-99]. For the Volterra operator Jg, we show that, for 0<α1, Jg never has a closed range on F(p,pα2,s). We then prove that the notions of compactness, weak compactness and strict singularity coincide in the case of Jg acting on F(p,p2,s).

关键词: integration operator, closed range property, strict singularity

Abstract: We study the closed range property and the strict singularity of integration operators acting on the spaces F(p,pα2,s). We completely characterize the closed range property of the Volterra companion operator Ig on F(p,pα2,s), which generalizes the existing results and answers a question raised in [A. Anderson, Integral Equations Operator Theory, 69 (2011), no. 1, 87-99]. For the Volterra operator Jg, we show that, for 0<α1, Jg never has a closed range on F(p,pα2,s). We then prove that the notions of compactness, weak compactness and strict singularity coincide in the case of Jg acting on F(p,p2,s).

Key words: integration operator, closed range property, strict singularity

中图分类号: 

  • 47G10