[1] Desmarais D J, Strauss H, Summons R E, et al. Carbon isotope evidence for the stepwise oxidation of the Proterozoic environment. Nature, 1992, 359: 605–609 [2] Bresch D, Desjardins B, Lin C K. On some compressible fluid models: Korteweg, lubrication and shallow water systems. Comm Partial Differential Equations, 2003, 28: 843–868 [3] Danchin R, Desjardins B. Existence of solutions for compressible fluid models of Korteweg type. Ann Inst H Poincare Anal Non Lineaire, 2001, 18: 97–133 [4] Deng S J, Yu S H. Green’s function and pointwise convergence for compressible Navier-Stokes equations. Quart Appl Math, 2017, 75: 433–503 [5] Du L L, Wu Z G. Solving the non-isentropic Navier-Stokes equations in odd space dimensions: The Green function method. J Math Phys, 2017, 58: 101506 [6] Duan R J. Green’s function and large time behavior of the Navier-Stokes-Maxwell system. Anal Appl, 2012, 10: 133–197 [7] Duan R J, Liu H X, Ukai S, Yang T. Optimal Lp-Lq convergence rate for the compressible Navier-Stokes equations with potential force. J Diff Eqns, 2007, 238: 220–233 [8] Duan R J, Ukai S, Yang T, Zhao H J. Optimal convergence rate for the compressible Navier-Stokes equations with potential force. Math Models Methods Appl Sci, 2007, 17: 737–758 [9] Dunn J E, Serrin J. On the thermomechanics of interstitial working. Arch Ration Mech Anal, 1985, 88: 95–133 [10] Gao J C, Yang Z, Yao Z A. Long-time behavior of solution for the compressible Navier-Stokes-Korteweg equations in R3. Appl Math Lett, 2015, 48: 30–35 [11] Haspot B. Existence of global weak solution for compressible fluid models of Korteweg type. J Math Fluid Mech, 2009, 13: 223–249 [12] Hattori H, Li D. Global solutions of a high-dimensional system for Korteweg materials. J Math Anal Appl, 1996, 198: 84–97 [13] Hoff D, Zumbrun K. Multi-dimensional diffusion wave for the Navier-Stokes equations of compressible flow. Indiana Univ Math J, 1995, 44: 603–676 [14] Hoff D, Zumbrun K. Pointwise decay estimates for multidimensional Navier-Stokes diffusion waves. Z Angew Math Phys, 1997, 48: 597–614 [15] Hou X F, Peng H Y, Zhu C J. Global well-posedness of the 3D non-isothermal compressible fluid model of Korteweg type. Nonlinear Analysis: Real World Applications, 2018, 43: 18–53 [16] Hou X F, Peng H Y, Zhu C J. Global classical solutions to the 3D Navier-Stokes-Korteweg equations with small initial energy. Analysis and Applications, 2018, 16: 55–84 [17] Hou X F, Yao L, Zhu C J. Vanishing capillarity limit of the compressible non-isentropic Navier-Stokes-Korteweg system to Navier-Stokes system. J Math Anal Appl, 2017, 448: 421–446 [18] Kawashima S. System of a Hyperbolic-Parabolic Composite Type, with Applications to the Equations of Manetohydrodynamics [T]. Kyoto University, 1983 [19] Kobayashi T, Shibata Y. Remark on the rate of decay of solutions to linearized compressible Navier-Stokes equations. Pacific J Math, 2002, 207: 199–234 [20] Korteweg D J. Sur la forme que prennent les equations du mouvements des fluides sil’on tient compte des forces capillaires causees par des variations de densite considerables mais connues et sur la theorie de la capillarite dans l’hypothese d’une variation continue de la densite. Archives Neerlandaises de Sciences Exactes et Naturelles, 1901, 6: 1–24 [21] Kotschote M. Strong solutions for a compressible fluid model of Korteweg type. Ann Inst H Poincare Anal Non Lineaire, 2008, 25: 679–696 [22] Li H L, Zhang T. Large time behavior of isentropic compressible Navier-Stokes system in R3. Math Methods Appl Sci, 2011, 34: 670–682 [23] Li H L, Yang T, Zhong M Y. Green’s function and pointwise space-time behaviors of the Vlasov-Poisson-Boltzmann system. Arch Ration Mech Anal, 2019, 235: 1–47 [24] Liu T P, Noh S E. Wave propagation for the compressible Navier-Stokes equations. J Hyperbolic Differ Eqns, 2015, 12: 385–445 [25] Liu T P, Wang W K. The pointwise estimates of diffusion wave for the Navier-Stokes systems in odd multi-dimension. Comm Math Phys, 1998, 196: 145–173 [26] Liu T P, Zeng Y N. Large time behavior of solutions for general quasilinear hyperbolic-parabolic systems of conservation laws. Mem Amer Math Soc, 1997, 125 [27] Matsumura A, Nishida T. The initial value problems for the equations of motion of viscous and heat-conductive gases. J Math Kyoto Univ, 1980, 20: 67–104 [28] Saito H. On the maximal Lp-Lq regularity for a compressible fluid model of Korteweg type on general domains. J Diff Eqns, 2020, 268: 2802–2851 [29] Wang H T. Green’s Function for Viscous System [T]. National University of Singapore, 2014 [30] Wang W K, Yang T. The pointwise estimates of solutions for Euler equations with damping in multi-dimensions. J Diff Eqns, 2001, 173: 410–450 [31] Wang W K, Wu Z G. Pointwise estimates of solution for the Navier-Stokes-Poisson equations in multi-dimensions. J Diff Eqns, 2010, 248: 1617–1636 [32] Wang W J, Wang W K. Decay rates of the compressible Navier-Stokes-Korteweg equations with potential forces. Discrete Contin Dyn Syst, 2015, 35: 513–536 [33] Wang Y J, Tan Z. Optimal decay rates for the compressible fluid models of Korteweg type. J Math Anal Appl, 2011, 379: 256–271 [34] Wu Z G, Wang W K. Pointwise estimates for bipolar compressible Navier-Stokes-Poisson system in dimension three. Arch Rational Mech Anal, 2017, 326: 587–638 [35] Wu Z G, Wang W K. Pointwise estimates of solution for non-isentropic Navier-Stokes-Poisson equations in multidimensions. Acta Math Sci, 2012, 32B: 1681–1702 [36] Wu Z G, Li Y P. Pointwise estimates of solutions for the multi-dimensional bipolar Euler-Poisson system. Z Angew Math Phys, 2016, 67: 50 [37] Yu S H. Nonlinear wave propagation over a Boltzmann shock profile. J Amer Math Soc, 2010, 23: 1040–1118 [38] Zeng Y N. Thermal non-equilibrium flows in three space dimensions. Arch Rational Mech Anal, 2016, 219: 27–87 [39] Zeng Y N. L1 asymptotic behavior of compressible isentropic viscous 1-D flow. Comm Pure Appl Math, 1994, 47: 1053–1082 |