[1] Radon J. Über die bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten. Berichte Sächsische Akademie der Wissenschaften, Leipzig, Mathematische-Physikalische Klass, 1917, 69:262-267 [2] Wei S, Wang S, Xu H. Regularization method for axially symmetric objects tomography from a single X-ray projection data. Journal of Image and Graphics, 2008, 13:2275-2280 [3] Chan R H, Liang H, Wei S, et al. High-order total variation regularization approach for axially symmetric object tomography from a single radiograph. Inverse Problems and Imaging, 2015, 9:55-77 [4] Lewitt R M. Reconstruction algorithms:Transform methods. Proceedings of the IEEE, 1983, 71:390-408 [5] Natterer F. The Mathematics of Computerized Tomography. New York:Wiley, 1986 [6] Kak A C, Slaney M. Principles of Computerized Tomographic Imaging. New York:IEEE Press, 1987 [7] Feldkamp L A, Davis L C, Kress J W. Practical cone-beam algorithm. Journal of the Optical Society of America A, 1984, 1:612-619 [8] Wang G, Lin T H, Cheng P C, et al. A general cone-beam reconstruction algorithm. IEEE Transactions on Medical Imaging, 1993, 12:486-496 [9] Gordon R, Bender R, Herman G T. Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography. Journal of Theoretical Biology, 1970, 29:471-481 [10] Gilbert P. Iterative methods for the three-dimensional reconstruction of an object from projections. Journal of Theoretical Biology, 1972, 36:105-117 [11] Andersen A H, Kak A C. Simultaneous algebraic reconstruction technique (SART):a superior implementation of the ART algorithm. Ultrasonic Imaging, 1984, 6:81-94 [12] Luo S, Meng R, Wei S, et al. Data-driven Method for 3D Axis-symmetric object reconstruction from single cone-beam projection data//Yuan J, Lu H. Proceedings of the Third International Symposium on Image Computing and Digital Medicine. New York:ACM, 2019:288-292 [13] Rudin L I, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms. Physica D, 1992, 60:259-268 [14] Sauer K, Bouman C. Bayesian estimation of transmission tomograms using segmentation based optimization. IEEE Transactions on Nuclear Science, 1992, 39:1144-1152 [15] Chambolle A, Caselles V, Novaga M, et al. An introduction to total variation for image analysis//Fornasier M. Theoretical Foundations and Numerical Methods for Sparse Recovery. Berlin:Walter de Gruyter, 2010:263-340 [16] Chambolle A, Pock T. A first-order primal-dual algorithm for convex problems with applications to imaging. Journal of Mathematical Imaging and Vision, 2011, 40:120-145 [17] Burger M, Osher S. A guide to the TV zoo//Burger M, Osher S. Level Set and PDE Based Reconstruction Methods in Imaging. Switzerland:Springer International Publishing, 2013:1-70 [18] Chambolle A. Total variation minimization and a class of binary MRF models//Rangarajan A, Vemuri B, Yuille A L. Energy Minimization Methods in Computer Vision and Pattern Recognition. Berlin:SpringerVerlag, 2005:136-152 [19] Abergel R, Louchet C, Moisan L, et al. Total variation restoration of images corrupted by Poisson noise with iterated conditional expectations//Aujol J-F, Nikolova M, Papadakis N. International Conference on Scale Space and Variational Methods in Computer Vision. Switzerland:Springer International Publishing, 2015:178-190 [20] Chambolle A, Levine S E, Lucier B J. An upwind finite-difference method for total variation-based image smoothing. SIAM Journal on Imaging Sciences, 2011, 4:277-299 [21] Condat L. Discrete total variation:new Definition and minimization. SIAM Journal on Imaging Sciences, 2016, 10:1258-1290 [22] Abergel R, Moisan L. The Shannon total variation. Journal of Mathematical Imaging and Vision, 2016, 59:1-30 [23] Hosseini A. A regularization term based on a discrete total variation for mathematical image processing. 2017. http://arxiv.org/pdf/1711.10534.pdf [24] Li F, Shen C, Fan J, et al. Image restoration combining a total variational filter and a fourth-order filter. Journal of Visual Communication and Image Representation, 2007, 18:322-330 [25] Lysaker M, Tai X C. Iterative image restoration combining total variation minimization and a second-order functional. International Journal of Computer Vision, 2006, 66:5-18 [26] Papafitsoros K, Schönlieb C B. A combined first and second order variational approach for image reconstruction. Journal of Mathematical Imaging and Vision, 2014, 48:308-338 [27] Thanh D N H, Prasath V B S, Hieu L M, et al. An adaptive method for image restoration based on high-order total variation and inverse gradient. Signal, Image and Video Processing, 2020, 14:1189-1197 [28] Chan T, Marquina A, Mulet P. High-order total variation-based image restoration. SIAM Journal on Scientific Computing, 2000, 22:503-516 [29] Chen H Z, Song J P, Tai X C. A dual algorithm for minimization of the LLT model. Advances in Computational Mathematics, 2009, 31:115-130 [30] You Y L, Kaveh M. Fourth-order partial differential equation for noise removal. IEEE Transactions on Image Processing, 2000, 9:1723-1730 [31] Lysaker M, Lundervold A, Tai X C. Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time. IEEE Transactions on Image Processing, 2003, 12:1579-1590 [32] Steidl G. A note on the dual treatment of higher order regularization functionals. Computing, 2005, 76:135-148 [33] Benning M. Higher-order TV methods-Enhancement via Bregman iteration. Journal of Scientific Computing, 2013, 54:269-310 [34] Lefkimmiatis S, Bourquard A, Unser M. Hessian-based norm regularization for image restoration with biomedical applications. IEEE Transactions on Image Processing, 2012, 21:983-995 [35] Bauschke H H, Combettes P L. Convex Analysis and Monotone Operator Theory in Hilbert Space. New York:Springer, 2011 [36] Asaki T J, Chartrand R, Vixie K R, et al. Abel inversion using total-variation regularization. Inverse Problems, 2005, 21:1895-1903 [37] Asaki T J, Campbell P R, Chartrand R, et al. Abel inversion using total variation regularization:applications. Inverse Problems in Science and Engineering, 2006, 14:873-885 [38] Abraham R, Bergounioux M, Trélat E. A penalization approach for tomographic reconstruction of binary axially symmetric objects. Applied Mathematics and Optimization, 2008, 58:345-371 [39] Chen K, Wei S. On some variational models and their algorithms for axially symmetric objects tomography from a single X-ray source. Scientia Sinica, 2015, 45:1537-1548 [40] Ma S. Alternating proximal gradient method for convex minimization. Journal of Scientific Computing, 2016, 68:1-27 [41] He B, Yang H, Wang S. Alternating direction method with self-adaptive penalty parameters for monotone variational inequalities. Journal of Optimization Theory and Applications, 2000, 106:337-356 [42] Donoho L D. De-noising by soft-thresholding. IEEE Transactions on Information Theory, 1995, 41:613-627 [43] Boyd S, Parikh N, Chu E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning, 2011, 3:1-122 [44] Canny J. A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, 8:679-698 |