[1] Akramov I, Debiec T, Skipper J, Wiedemann E. Energy conservation for the compressible Euler and NavierStokes equations with vacuum. Anal PDE, 2020:799-811 [2] Alinhac S. The null condition for quasilinear wave equations in two space dimensions I. Invent Math, 2001, 145:597-618 [3] Bahouri H, Chemin J Y, Danchin R. Fourier analysis and nonlinear partial differential equations. Heidelberg:Springer, 2011 [4] Bardos C, Titi E. Onsager's conjecture for the incompressible Euler equations in bounded domains. Arch Ration Mech Anal, 2018, 228:197-207 [5] Bardos C, Titi E, and Wiedemann E. Onsager's conjecture with physical boundaries and application to the vanishing viscosity limit. Comm Math Phys, 2019, 370:291-310 [6] Buckmaster T. De Lellis C, Isett P, Szekelyhidi Jr L. Anomalous dissipation for 15-Holder Euler flows. Ann Math, 2015, 182:127-172 [7] Buckmaster T, De Lellis C, Szekelyhidi Jr L, Vicol V. Onsager's conjecture for admissible weak solutions. Comm Pure Appl Math, 2019, 72:229-274 [8] Buckmaster T, De Lellis C, Szekelyhidi Jr L. Dissipative Euler flows with Onsager-critical spatial regularity. Comm Pure Appl Math, 2016, 69:1613-1670 [9] Chen Y M, Zhang P. The global existence of small solutions to the incompressible viscoelastic fluid system in 2 and 3 space dimensions. Comm Partial Differential Equations, 2006, 31:1793-1810 [10] Cheskidov A, Constantin P, Friedlander S, Shvydkoy R. Energy conservation and Onsagers conjecture for the Euler equations. Nonlinearity, 2008, 21:1233-1252 [11] Constantin P E W, Titi E. Onsager's conjecture on the energy conservation for solutions of Euler's equation. Comm Math Phys, 1994, 165:207-209 [12] De Lellis C, Szekelyhidi Jr L. The Euler equations as a differential inclusion. Ann Math, 2009, 170:1417-1436 [13] De Lellis C, Szekelyhidi Jr L. Dissipative continuous Euler flows. Invent Math, 2013, 193:377-407 [14] De Lellis C, Szekelyhidi Jr L. Dissipative Euler flows and Onsager's conjecture. J Eur Math Soc, 2014,16:1467-1505 [15] Drivas T D, Nguyen H Q. Onsager's conjecture and anomalous dissipation on domains with boundary. SIAM J Math Anal, 2018, 50:4785-4811 [16] Duchon J, Robert R. Inertial energy dissipation for weak solutions of incompressible Euler and NavierStokes equations. Nonlinearity, 2000, 13:249-255 [17] Eyink G L. Energy dissipation without viscosity in ideal hydrodynamics:I. Fourier analysis and local energy transfer. Phys D, 1994, 78:222-240 [18] Fang D Y, Zhang T, Zi R Z. Dispersive effects of the incompressible viscoelastic fluids. Discrete Contin Dyn Syst, 2018, 38:5261-5295 [19] Feireisl E, Gwiazda P, Świerczewska-Gwiazda A, Wiedemann E. Regularity and Energy Conservation for the Compressible Euler Equations. Arch Ration Mech Anal, 2017, 223:1375-1395 [20] Fjordholm U S, Wiedemann E. Statistical solutions and Onsager's conjecture. Phys D, 2018, 376/377:259-265 [21] Gwiazda P, Michálek M, Świerczewska-Gwiazda A. A note on weak solutions of conservation laws and energy/entropy conservation. Arch Ration Mech Anal, 2018, 229:1223-1238 [22] Hu X P, Lin F H. On the Cauchy problem for two dimensional incompressible viscoelastic flows. arXiv:1601.03497 [23] Isett P. A proof of Onsager's conjecture. Ann Math, 2018, 188:871-963 [24] Klainerman S. The null condition and global existence to nonlinear wave equations. Lect in Appl Math, 1986, 23:293-326 [25] Lei Z, Liu C, Zhou Y. Global solutions for incompressible viscoelastic fluids. Arch Ration Mech Anal, 2008, 188:371-398 [26] Lei Z. Global smooth solutions for 2D incompressible elastodynamics. Comm Pure Appl Math, 2016, 69:2072-2106 [27] Lei Z, Sideris T, Zhou Y. Almost global existence for 2-D incompressible isotropic elastodynamics. Trans Amer Math Soc, 2015, 367:8175-8197 [28] Lin F H, Liu C, Zhang P. On hydrodynamics of viscoelastic fluids. Comm Pure Appl Math, 2005, 58:1437-1471 [29] Lin F H, Zhang P. On the initial-boundary value problem of the incompressible viscoelastic fluid system. Comm Pure Appl Math, 2008, 61:539-558 [30] Lions P L. Mathematical topics in fluid mechanics. Vol. 1. Incompressible models. Oxford Science Publications. New York:The Clarendon Press, Oxford University Press, 1996 [31] Onsager L. Statistical hydrodynamics. Nuovo Cimento (Supplement), 1949, 6:279-287 [32] Qian J Z. Well-posedness in critical spaces for incompressible viscoelastic fluid system. Nonlinear Anal, 201072:3222-3234 [33] Scheffer V. An inviscid flow with compact support in space-time. J Geom Anal, 19933:343-401 [34] Serrin J. The initial value problem for the Navier-Stokes equations//Nonlinear Problems. Madison WI:Univ of Wisconsin Press, 1963:69-98 [35] Shinbrot M. The energy equation for the Navier-Stokes system. SIAM J Math Anal, 1974, 5:948-954 [36] Shnirelman A. On the nonuniqueness of weak solution of the Euler equation. Commun Pure Appl Math, 1997, 50:1261-86 [37] Sideris T C, Thomases B. Global existence for three-dimensional incom-pressible isotropic elastodynamics via the incompressible limit. Comm Pure Appl Math, 2005, 58:750-788 [38] Sideris T C, Thomases B. Global existence for 3d incompressible isotropic elastodynamcis. Comm Pure Appl Math, 2007, 60:1707-1730 [39] Wang X C. Global existence for the 2D incompressible isotropic elastodynamics for small initial data. Ann Henri Poincaré, 2017, 18:1213-1267 [40] Yu C. A new proof of the energy conservation for the Navier-Stokes equations. Preprint 2016. arXiv:1604.05697 [41] Yu C. Energy conservation for the weak solutions of the compressible Navier-Stokes equations. Arch Ration Mech Anal, 2017, 225:1073-1087 [42] Zhang T, Fang D Y. Global existence of strong solution for equations related to the incompressible viscoelastic fluids in the critical Lp framework. SIAM J Math Anal, 2012, 44:2266-2288 [43] Zhu Y. Global small solutions of 3D incompressible Oldroyd-B model without damping mechanism. J Funct Anal, 2018, 274:2039-2060 |