[1] Palatucci G, Pisante A. Improved Sobolev embeddings, profile decomposition, and concentrationcompactness for fractional Sobolev spaces. Calc Var Partial Differ Equ, 2014, 50(3/4):799-829 [2] Ghoussoub N, Shakerian S. Borderline variational problems involving fractional Laplacians and critical singularities. Adv Nonlinear Stud, 2015, 15(3):527-555 [3] Filippucci R, Pucci P, Robert F. On a p-Laplace equation with multiple critical nonlinearities. J Math Pures Appl, 2009, 91(2):156-177 [4] Nezza E D, Palatucci G, Valdinoci E. Hitchhikers guide to the fractional Sobolev spaces. Bull Sci Math, 2012, 136(5):521-573 [5] Yang J, Wu F. Doubly critical problems involving fractional Laplacians in $\mathbb{R}^N$. Adv Nonlinear Stud, 2017, 17(4):677-690 [6] Ghoussoub N, Yuan C. Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents. Trans Amer Math Soc, 2000, 12:5703-5743 [7] Ghoussoub N, Robert F. The Hardy-Schrödinger operator with interior singularity:The remaining cases. Calc Var Partial Differ Equ, 2016, 56(5):149 [8] Ghoussoub N, Robert F, Shakerian S, Zhao M. Mass and asymptotics associated to fractional HardySchrödinger operators in critical regimes. Commun Part Differ Equ, 2018:1-34 [9] Lorenzo D A, Jannelli E. Nonlinear critical problems for the biharmonic operator with Hardy potential. Calc Var Partial Differ Equ, 2015, 54(1):365-396 [10] Kang D, Li G. On the elliptic problems involving multi-singular inverse square potentials and multicritical Sobolev-Hardy exponents. Nonlinear Anal, 2007, 66:1806-1816 [11] Chen W. Fractional elliptic problems with two critical Sobolev-Hardy exponents. Electronic Journal of Differential Equations, 2018, (2018) [12] Huang Y, Kang D. On the singular elliptic systems involving multiple critical Sobolev exponents. Nonlinear Analysis, 2011, 74(2):400-412 [13] Wang J, Shi J. Standing waves for a coupled nonlinear Hartree equations with nonlocal interaction. Calc Var Partial Differ Equ, 2017, 56(6):168 [14] Wang Z P, Zhou H S. Solutions for a nonhomogeneous elliptic problem involving critical Sobolev-Hardy exponent in $\mathbb{R}^N$. Acta Math Sci, 2006, 26B(3):525-536 [15] Zhang J G, Hsu T S. Multiplicity of positive solutions for a nonlocal elliptic problem involving critical Sobolev-Hardy exponents and concave-convex nonlinearities. Acta Math Sci, 2020, 40B(3):679-699 [16] Caffarelli L, Silvestre L. An extension problem related to the fractional Laplacian. Commun Part Differ Equ, 2007, 32:1245-1260 [17] Catrina F, Wang Z-Q. On the Caffarelli-Kohn-Nirenberg inequalities:sharp constants, existence (and nonexistence), and simmetry of extremal functions. Comm Pure Appl Math, 2001, 54:229-258 [18] Chern J L, Lin C S. Minimizers of Caffarelli-Kohn-Nirenberg inequalities with the singularity on the boundary. Arch Ration Mech Anal, 2010, 197(2):401-432 [19] Ghoussoub N, Moradifam A. Functional Inequalities:New Perspectives and New Applications. Mathematical Surveys and Monographs, vol 187. Providence, RI:American Mathematical Society, 2013 [20] Wang Y, Shen Y. Nonlinear biharmonic equations with Hardy potential and critical parameter. J Math Anal Appl, 2009, 355(2):649-660 [21] Khalil A E, Kellati S, Touzani A. On the principal frequency curve of the p-biharmonic operator. Arab Journal of Mathematical Sciences, 2011, 17(2):89-99 [22] Brézis H, Nirenberg L. Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Comm Pure Appl Math, 1983, 36:437-477 [23] Dipierro S, Montoro L, Peral I, et al. Qualitative properties of positive solutions to nonlocal critical problems involving the Hardy-Leray potential. Calc Var Partial Differ Equ, 2016, 55(4):1-29 [24] Lions P L. The concentration-compactness principle in the calculus of variations, The locally compact case, part 2. Ann Inst H Poincaré Anal Non Linéaire, 1984, 2:223-283 [25] Lions P L. The concentration-compactness principle in the calculus of variations, The limit case, part 1. Rev Mat H Iberoamericano, 1985, 1(1):145-201 [26] Frank R L, Lieb E H, Seiringer R. Hardy-Lieb-Thirring inequalities for fractional Schrödinger operators. J Amer Math Soc, 2008, 21(4):925-950 [27] Lieb E H, Loss M. Analysis, Volume 14 of Graduate Studies in Mathematics. Amer Math Soc, 1997 [28] Singh G. Nonlocal pertubations of fractional Choquard equation. http://arxiv.org/pdf/1705.05775 [29] Moroz V, Schaftingen J V. Groundstates of nonlinear Choquard equations:Existence, qualitative properties and decay asymptotics. J Funct Anal, 2012, 265(2) [30] Morrey C B. On the solutions of quasi-linear elliptic partial differential equations. Trans Amer Math Soc, 1938, 43:126-166 [31] Komori Y, Shirai S. Weighted Morrey spaces and a singular integral operator. Math Nachr, 2009, 282(2):219-231 [32] Sawano Y. Generalized Morrey Spaces for Non-doubling Measures. Nonlinear Differ Equ Appl, 2008, 15:413-425 [33] Sawyer E, Wheeden R L. Weighted inequalities for fractional integrals on Euclidean and homogeneous spaces. Am J Math, 1992, 114:813-874 [34] Muckenhoupt B, Wheeden R. Weighted norm inequalities for fractional integrals. Trans Amer Math Soc, 1974, 192:261-274 [35] Servadei R, Raffaella E. Variational methods for non-local operators of elliptic type. Discrete Contin Dyn Syst, 2013, 33:2105-2137 [36] Park Y J. Fractional Polya-Szegö inequality. J Chungcheong Math Soc, 2011, 24(2):267-271 [37] Ambrosetti A, Rabinowitz P H. Dual variational methods in critical point theory and applications. J Funct Anal, 1973, 14:349-381 |