[1] Elliot S J, Jury M T. Composition operators on Hardy spaces of a half plane. Bull Lond Math Soc, 2012, 44:489-495 [2] Elliot S J, Wynn A. Composition operators on weighted Bergman spaces of a half plane. Proc Edinb Math Soc, 2011, 54:373-379 [3] Matache V. Composition operators on Hardy spaces of a half plane. Proc Amer Math Soc, 1999, 127:1483-1491 [4] Shapiro J H, Smith W. Hardy spaces that support no compact composition operators. J Func Anal, 2003, 205:62-89 [5] Schroderus R. Spectra of linear fractional compositionm operators on Hardy and weighted Bergman spaces of the half plane. J Math Anal Appl, 2017, 447:817-833 [6] Sharma A K, Sharma M, Raj K. Composition operators on the Dirichlet space of the upper half plane. New York J Math, 2019, 25:198-206 [7] Siskakis A. Semigroups of composition operators on the Dirichlet space. Results in Mathematics, 1996, 30:165-173 [8] Ballamoole S, Bonyo J O, Miller T L, Miller V G. Cesàro operators on the Hardy and Bergman spaces of the half plane. Complex Anal Oper Theory, 2016, 10:187-203 [9] Zhu K. Operator Theory and Functions Spaces. New York, Basel:Marcel Dekker Inc, 1990 [10] Duren P. Schuster A. Bergman Spaces. Mathematical Surveys and Monographs 100. Providence, RI:Amer Math Soc, 2004 [11] Peloso M M. Classical Spaces of Holomorphic Functions. Technical Report, Universit di Milano, 2014 [12] Arcozzi N, Rochbers R, Sawyer E T, Wick B D. The Dirichlet space:A survey. New York J Math, 2011, 17A:45-86 [13] Fallah O, Kellay K, Mashreghi J, Ransford T. A Primer on the Dirichlet Space. New York:Cambridge University Press, 2014 [14] Ross W T. The classical dirichlet space//Recent Advances in Operator-Related Function Theory:Contemp Math 393. Providence, RI:Amer Math Soc, 2006:171-197 [15] Dunford N, Schwartz J T. Linear Operators Part I. New York:Interscience Publishers, 1958 [16] Engel K -J, Nagel R. A Short Course on Operator Semigroups. Universitext. New York:Springer, 2006 [17] Pazy A. Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Science 44. New York:Springer-Verlag, 1970 [18] Rudin W. Functional Analysis. McGraw-Hill Inc, 1991 [19] Duren P, Gallardo-Gutiérrez E A, Montes-Rodríguez A. A Paley-Wiener theorem for Bergman spaces with application to Invariant Subspaces. Bull Lond Math Soc, 2007, 39:459-466 [20] Bonyo J O. Spectral analysis of certain groups of isometries on the Hardy and Bergman spaces. J Math Anal Appl, 2017, 456:1470-1481 |