[1] Ait-Mahiout K, Alves C O. Existence and multiplicity of solutions for a class of quasilinear problems in Orlicz-Sobolev spaces. Complex Var Elliptic Equ, 2017, 62:767-785 [2] Alves C O, da Silva A R. Multiplicity and concentration of positive solutions for a class of quasilinear problems through Orlicz-Sobolev space. J Math Phys, 2016, 57:111502 [3] Alves C O, Liu S B. On superlinear p(x)-Laplacian equations in $\mathbb{R}^N$. Nonlinear Anal, 2010, 73:2566-2579 [4] Ambrosetti A, Rabinowitz P. Dual variational methods in critical point theory and applications. J Funct Anal, 1973, 14:349-381 [5] Azzollini A. Minimum action solutions for a quasilinear equation. J Lond Math Soc, 2015, 92:583-595 [6] Azzollini A, d'Avenia P, Pomponio A. Quasilinear elliptic equations in $\mathbb{R}^N$ via variational methods and Orlicz-Sobolev embeddings. Calc Var Partial Differential Equations, 2014, 49:197-213 [7] Badiale M, Pisani L, Rolando S. Sum of weighted Lebesgue spaces and nonlinear elliptic equations. NoDEA Nonlinear Differ Equ Appl, 2011, 18:369-405 [8] Bahrouni A, Radulescu V D, Repovs D D. Double phase transonic flow problems with variable growth:nonlinear patterns and stationary waves. Nonlinearity, 2019, 32(7):2481-2495 [9] Bartsch T, Willem M. On an elliptic equation with concave and convex nonlinearities. Proc Amer Math Soc, 1995, 123:3555-3561 [10] Bonanno G, Molica Bisci G, Rǎdulescu V. Existence of three solutions for a non-homogeneous Neumann problem through Orlicz-Sobolev spaces. Nonlinear Anal, 2011, 74:4785-4795 [11] Cencelj M, Radulescu V D, Repovs D D. Double phase problems with variable growth. Nonlinear Anal, 2018, 177:270-287 [12] Chorfi N, Rădulescu V D. Standing waves solutions of a quasilinear degenerate Schröinger equation with unbounded potential. Electron J Qual Theory Differ Equ, 2016, 2016:1-12 [13] Chung N T. Existence of solutions for a class of Kirchhoff type problems in Orlicz-Sobolev spaces. Ann Polon Math, 2015, 113:283-294 [14] Clément P, García-Huidobro M, Manásevich R, Schmitt K. Mountain pass type solutions for quasilinear elliptic equations. Calc Var Partial Differential Equations, 2000, 11:33-62 [15] Clément P. de Pagter B, Sweers G, de Thelin F. Existence of solutions to a semilinear elliptic system through Orlicz-Sobolev spaces. Mediterr J Math, 2004, 1:241-267 [16] Dai G, Hao R. Existence of solutions for a p(x)-Kirchhoff-type equation. J Math Anal Appl, 2009, 359:275-284 [17] Fabian M, Habala P, Hájk P, Montesinos V, Zizler V. Banach Space Theory:the Basis for Linear and Nonlinear Analysis. New York:Springer, 2011 [18] Fang F, Tan Z. Existence and multiplicity of solutions for a class of quasilinear elliptic equations:an Orlicz-Sobolev space setting. J Math Anal Appl, 2012, 389:420-428 [19] Fang F, Tan Z. Existence of three solutions for quasilinear elliptic equations:an Orlicz-Sobolev space setting. Acta Math Appl Sin Engl Ser, 2017, 33:287-296 [20] Figueiredo G, Santos J A. Existence of least energy nodal solution with two nodal domains for a generalized Kirchhoff problem in an Orlicz-Sobolev space. Math Nachr, 2017, 290:583-603 [21] Fiscella A. A fractional Kirchhoff problem involving a singular term and a critical nonlinearity. Adv Nonlinear Anal, 2019, 8(1):645-660 [22] Frehse J, Seregin G A. Regularity of solutions to variational problems of the deformation theory of plasticity with logarithmic hardening. Proc St Petersburg Math Soc, 1998, 5:184-222; English translation:Amer Math Soc Trans II, 1999, 193:127-152 [23] Fuchs M, Osmolovki V. Variational integrals on Orlicz-Sobolev spaces. Z Anal Anwend, 1998, 17:393-415 [24] Fuchs M, Seregin G. Variational methods for fluids of Prandtl-Eyring type and plastic materials with logarithmic hardening. Math Methods Appl Sci, 1999, 22:317-351 [25] Fukagai N, Narukawa K. Nonlinear eigenvalue problem for a model equation of an elastic surface. Hiroshima Math J, 1995, 25:19-41 [26] Fukagai N, Narukawa K. On the existence of multiple positive solutions of quasilinear elliptic eigenvalue problems. Ann Mat Pura Appl, 2007, 186:539-564 [27] Gossez J P. A strongly nonlinear elliptic problem in Orlicz-Sobolev spaces//Proceedings of Symposia in Pure Mathematics 45. Providence, RI:American Mathematical Society, 1986:455-462 [28] He C, Li G. The existence of a nontrivial solution to the p&q-Laplacian problem with nonlinearity asymptotic to up-1 at infinity in $\mathbb{R}^N$. Nonlinear Anal, 2008, 68:1100-1119 [29] Jeanjean L. On the existence of bounded Palais-Smale sequences and application to a Landsman-Lazer type problem set on $\mathbb{R}^N$. Proc Roy Soc Edinburgh, 1999, 129:787-809 [30] Kim J -M, Kim Y -H, Lee J. Existence and multiplicity of solutions for Kirchhoff-Schrödinger type equations involving p(x)-Laplacian on the whole space. Nonlinear Anal Real World Appl, 2019, 45:620-649 [31] Kim J -M, Kim Y -H, Lee J. Existence of weak solutions to a class of Schrödinger type equations involving the fractional p-Laplacian in $\mathbb{R}^N$. J Korean Math Soc, 2019, 563(6):1529-1560 [32] Lee S D, Park K, Kim Y -H. Existence and multiplicity of solutions for equations involving nonhomogeneous operators of p-Laplace type in $\mathbb{R}^N$. Bound Value Probl, 2014, 2014:261 [33] Lin X, Tang X H. Existence of infinitely many solutions for p-Laplacian equations in $\mathbb{R}^N$. Nonlinear Anal, 2013, 92:72-81 [34] Liu S B. On ground states of superlinear p-Laplacian equations in $\mathbb{R}^N$. J Math Anal Appl, 2010, 361:48-58 [35] Liu S B. On superlinear problems without Ambrosetti and Rabinowitz condition. Nonlinear Anal, 2010, 73:788-795 [36] Liu S B, Li S J. Infinitely many solutions for a superlinear elliptic equation. Acta Math Sinica (Chin Ser), 2003, 46:625-630 [37] Mihǎilescu M, Rǎdulescu V. Existence and multiplicity of solutions for quasilinear nonhomogeneous problems:an Orlicz-Sobolev space setting. J Math Anal Appl, 2007, 330:416-432 [38] Miyagaki O H, Juárez Hurtado E, Rodrigues R S. Existence and multiplicity of solutions for a class of elliptic equations without Ambrosetti-Rabinowitz type conditions. J Dyn Differ Equ, 2018, 30:405-432 [39] Miyagaki O H, Souto M A S. Superlinear problems without Ambrosetti and Rabinowitz growth condition. J Differ Equ, 2008, 245:3628-3638 [40] Molica Bisci G, Radulescu V D. Multiplicity results for elliptic fractional equations with subcritical term. Nonlinear Differ Equ Appl, 2015, 22(4):721-739 [41] Mukherjee T, Sreenadh K. On Dirichlet problem for fractional p-Laplacian with singular non-linearity. Adv Nonlinear Anal, 2019, 8(1):52-72 [42] Palais R. The principle of symmetric criticality. Comm Math Phys, 1979, 69:19-30 [43] Papageorgiou N S, Radulescu V D, Repovs D D. Double-phase problems with reaction of arbitrary growth. Z Angew Math Phys, 2018, 69(4):Art 108, 21 pp [44] Papageorgiou N S, Radulescu V D, Repovs D D. Double-phase problems and a discontinuity property of the spectrum. Proc Amer Math Soc, 2019, 147(7):2899-2910 [45] Pucci P, Xiang M, Zhang B. Multiple solutions for nonhomogeneous Schrödinger-Kirchhoff type equations involving the fractional p-Laplacian in $\mathbb{R}^N$. Calc Var Partial Differ Equ, 2015, 54:2785-2806 [46] Radulescu V D. Isotropic and anisotropic double-phase problems:old and new Opuscula. Mathematica, 2019,39:259-279 [47] Ragusa M A, Tachikawa A. Regularity for minimizers for functionals of double phase with variable exponents. Adv Nonlinear Anal, 2020, 9(1):710-728 [48] Rao M M, Ren Z D. Theory of Orlicz Spaces. New York:Marcel Dekker Inc, 1991 [49] Rubshtein B -Z A, Grabarnik G Y, Muratov M A, Pashkova Y S. Foundations of symmetric spaces of measurable functions//Lorentz, Marcinkiewicz and Orlicz spaces. Developments in Mathematics 45. Cham:Springer, 2016 [50] Santos J A, Soares S H M. Radial solutions of quasilinear equations in Orlicz-Sobolev type spaces. J Math Anal Appl, 2015, 428:1035-1053 [51] Teng K. Multiple solutions for a class of fractional Schrödinger equations in $\mathbb{R}^N$. Nonlinear Anal Real World Appl, 2015, 21:76-86 [52] Willem M. Minimax Theorems. Basel:Birkhauser, 1996 [53] Xiang M, Radulescu V D, Zhang B. Existence of solutions for a bi-nonlocal fractional p-Kirchhoff type problem. Comput Math Appl, 2016, 71(1):255-266 [54] Xiang M, Radulescu V D, Zhang B. Combined effects for fractional Schrödinger-Kirchhoff systems with critical nonlinearities. ESAIM Control Optim Calc Var, 2018, 24(3):1249-1273 [55] Zang A. p(x)-Laplacian equations satisfying Cerami condition. J Math Anal Appl, 2008, 337:547-555 [56] Zhang Q, Radulescu V D. Double phase anisotropic variational problems and combined effects of reaction and absorption terms. J Math Pures Appl, 2018, 118(9):159-203 |