[1] |
Abdellaoui B, Boucherif A, Touaoula T M. Fractional parabolic problems with a nonlocal initial condition. Moroccan J Pure Appl Anal, 2017, 3(1):116-132
|
[2] |
Abdellaoui B, Medina M, Peral I, Primo A. The effect of the Hardy potential in some Calderón-Zygmund properties for the fractional Laplacian. J Differential Equations, 2016, 260(11):8160-8206
|
[3] |
Abdellaoui B, Medina M, Peral I, Primo A. Optimal results for the fractional heat equation involving the Hardy potential. Nonlinear Anal, 2016, 140:166-207
|
[4] |
Adimurthi A, Giacomoni J, Santra S. Positive solutions to a fractional equation with singular nonlinearity. J Differential Equations, 2018, 265(4):1191-1226
|
[5] |
Alibaud N, Andreianov B, Bendahmane M. Renormalized solutions of the fractional Laplace equation. C R Math Acad Sci Paris, 2010, 348(13/14):759-762
|
[6] |
Applebaum D. Lévy Processes and Stochastic Calculus. Cambridge Studies in Advanced Mathematics, 116. 2nd ed. Cambridge:Cambridge Univ Press, 2009
|
[7] |
Barrios B, De Bonis I, Medina M, Peral I. Semilinear problems for the fractional laplacian with a singular nonlinearity. Open Math, 2015, 13:390-407
|
[8] |
Barrios B, Medina M, Peral I. Some remarks on the solvability of non-local elliptic problems with the Hardy potential. Commun Contemp Math, 2014, 16(4):1350046, 29
|
[9] |
Bénilan P, Boccardo L, Gallouet T, Gariepy R, Pierre M, Vasquez J L. An L1-theory of existence and uniqueness of solutions of nonlinear elliptic equations. Annali Scuola Norm Sup Pisa, 1995, 22(4):241-273
|
[10] |
Bisci G M, Radulescu V D, Servadei R. Variational methods for nonlocal fractional problems//Encyclopedia of Mathematics and its Applications, Vol 162. Cambridge:Cambridge University Press, 2016
|
[11] |
Boccardo L, Orsina L. Semilinear elliptic equations with singular nonlinearities. Calc Var Partial Differential Equations, 2010, 37(3/4):363-380
|
[12] |
Canino A, Montoro L, Sciunzi B, Squassina M. Nonlocal problems with singular nonlinearity. Bull Sci Math, 2017, 141(3):223-250
|
[13] |
Crandall M G, Rabinowitz P H, Tartar L. On a dirichlet problem with a singular nonlinearity. Comm Partial Differential Equations, 1977, 2(2):193-222
|
[14] |
Danielli D, Salsa S. Obstacle problems involving the fractional Laplacian//Recent Developments in Nonlocal Theory. Berlin:De Gruyter, 2018:81-164
|
[15] |
De Cave L M, Oliva F. Elliptic equations with general singular lower order term and measure data. Nonlinear Anal, 2015, 128:391-411
|
[16] |
Demengel F, Demengel G. Functional Spaces for the Theory of Elliptic Partial Differential Equations. Universitext. London:Springer; Les Ulis:EDP Sciences, 2012
|
[17] |
Di Nezza E, Palatucci G, Valdinoci E. Hitchhiker's guide to the fractional Sobolev spaces. Bull Sci Math, 2012, 136(5):521-573
|
[18] |
Dipierro, S, Figalli A, Valdinoci E. Strongly nonlocal dislocation dynamics in crystals. Comm Partial Differential Equations, 2014, 39(12):2351-2387
|
[19] |
Fiscella A, Servadei R Valdinoci E. Density properties for fractional Sobolev spaces. Ann Acad Sci Fenn Math, 2015, 40(1):235-253
|
[20] |
Kenneth K H, Petitta F, Ulusoy S. A duality approach to the fractional Laplacian with measure data. Publ Mat, 2011, 55(1):151-161
|
[21] |
Klimsiak T. Reduced measures for semilinear elliptic equations involving Dirichlet operators. Nonlinear Anal, 2016, 55(4):Art 78, 27
|
[22] |
Kufner A, John O, Fučík S. Function Spaces. Leyden, Academia, Prague:Noordhoff International Publishing, 1977
|
[23] |
Landkof N. Foundations of Modern Potential Theory. Die Grundlehren der Mathematischen Wissenschaften, Vol 180. New York, Heidelberg:Springer-Verlag, 1972
|
[24] |
Lazer A C, McKenna P J. On a singular nonlinear elliptic boundary-value problem. Proc Amer Math Soc, 1991, 111(3):721-730
|
[25] |
Leonori T, Peral I, Primo A, Soria F. Basic estimates for solutions of a class of nonlocal elliptic and parabolic equations. Discrete Contin Dyn Syst, 2015, 35(12):6031-6068
|
[26] |
Oliva F, Petitta F. On singular elliptic equations with measure sources. ESAIM Control Optim Calc Var, 2016, 22(1):289-308
|
[27] |
Oliva F, Petitta F. Finite and infinite energy solutions of singular elliptic problems:existence and uniqueness. J Differential Equations, 2018, 264(1):311-340
|
[28] |
Petitta F. Some remarks on the duality method for integro-differential equations with measure data. Adv Nonlinear Stud, 2016, 16(1):115-124
|
[29] |
Ponce A C. Elliptic PDEs, Measures and Capacities. EMS Tracts in Mathematics, 23. Zürich:European Mathematical Society (EMS), 2016
|
[30] |
Sire Y, Valdinoci E. Fractional Laplacian phase transitions and boundary reactions:a geometric inequality and a symmetry result. J Funct Anal, 2009, 256(6):1842-1864
|
[31] |
Stuart C A. Existence and approximation of solutions of non-linear elliptic equations. Math Z, 1976, 147(1):53-63
|
[32] |
Sun Y J, Zhang D Z. The role of the power 3 for elliptic equations with negative exponents. Calc Var Partial Differential Equations, 2014, 49(3/4):909-922
|